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2/22 Crash Course in �antum Computing

1 Qubit state −→ v =

[
α
β

]
∈ C2, |α|2 + |β|2 = 1

2 Single-qubit gate −→ M ≡
[
κ λ
µ ν

]
∈ U(2), i.e. M

† = M

e.g. Z :=

[
1 0

0 −1

]
, X :=

[
0 1

1 0

]
, H :=

1√
2

[
1 1

1 −1

]

3 N-qubit state/gate −→ v ∈ (C2)⊗N ∼= C2
N

, M ∈ U(2N)

e.g. CZ :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , CX :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


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2/22 Crash Course in �antum Computing

Sidenote (Tensor product)

[
α
β

]
⊗
[
γ
δ

]
=

α
[
γ
δ

]
β

[
γ
δ

]
 =


αγ
αδ
βγ
βδ


[

u11 u12

u21 u22

]
⊗
[

v11 v12

v21 v22

]
=

u11

[
v11 v12

v21 v22

]
u12

[
v11 v12

v21 v22

]
u21

[
v11 v12

v21 v22

]
u22

[
v11 v12

v21 v22

]


Hence, M1 ⊗M2(u⊗ v) = (M1u)⊗ (M2v)

(C2)⊗N := spanC

{
v1 ⊗ · · · ⊗ vn

∣∣∣∣ vi =

[
1

0

]
,

[
0

1

]}
∼= C2

N
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2/22 Crash Course in �antum Computing

4 Measurement of qubit v in basis {e0, e1}:

Possible outcomes: b ∈ {0, 1}
Possible bases:{

z0 ≡
[

1

0

]
, z1 ≡

[
0

1

]}
“measure Z”{

x0 ≡
1√
2

[
1

1

]
, x1 ≡

1√
2

[
1

−1

]}
“measure X”

v = α e0 + β e1 =⇒ p(b) =

{
|α|2 b = 0

|β|2 b = 1

Outcome b =

{
0

1

=⇒ collapse to

{
e0

e1
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2/22 Crash Course in �antum Computing

4 Measurement of qubit v in basis {e0, e1}:

Possible outcomes: b ∈ {0, 1}
Possible bases:{

z0 ≡
[

1

0

]
, z1 ≡

[
0

1

]}
“measure Z”{

x0 ≡
1√
2

[
1

1

]
, x1 ≡

1√
2

[
1

−1

]}
“measure X”

More generally:

p(b) = v†Pbv, Pb := ebe†
b
,

Outcome b =⇒ collapse to
1√
p(b)

Pbv

Qubit m in N-qubit state −→ P
(m)
b

:= I
⊗m−1 ⊗ Pb ⊗ I

⊗N−m−1
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3/22 Universal Computation

Theorem (Universal gates)
The following gates are universal:

H :=
1√
2

[
1 1

1 −1

]
, CZ :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , T :=

[
1 0

0 e
i
π
4

]
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�antum Computing
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4/22
Measurement-Based �antum Computing
The central idea

Computation in MBQC:

1 Start with fixed N-qubit resource state

2 Perform sequence of single-qubit measurements

The algorithm comprises:

1 order of measurements

2 basis (Z or X ) for each measurement

�estion: Measurements are destructive & non-deterministic.

Can we realize deterministic quantum algorithms?

Yes, with feed-forward.
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5/22 The Resource State

Parity-phase gate −→ P(α) := exp
[
−i

α
2

Z ⊗ Z

]

Resource state −→ multigraph

e.g.
P(π/4)

qubit, initially x0

P(π/4)2 = P(π/2)
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6/22
The Algorithms
Measurement pa�erns

Representation
Label vertices with expressions

an+1 ← φ(a1, . . . , an),

for

outcomes ai ∈ {0, 1}
classical function φ

e.g.

a← 0

c ← 1

e← b + c

b← 1

d ← a

Execution

1 Topological-sort dependencies

2 For each qubit, measure{
X φ(a1, . . . , an) = 0

Z otherwise

This is feed-forward

3 Store outcome in an+1

�estion: Can we decompose an

algorithm into “gates”?
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7/22
The “Gates”
a.k.a. Pa�ern fragments

A pattern fragment implementing gate G has:

Inputs
label: (x, z)← ∗
initial state: X

x
Z

z v

Outputs
label: ∗ ← (ξ, ζ)

final state: X
ξ
Z

ζ
Gv

e.g.

(x, z)← ∗; a← 0

c ← x

∗ ← (d + z, x)

b← 1

d ← b + z

can depend on inputs

& (other) outcomes
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8/22 Universality of MBQC

Claim
There are pa�ern fragments for {H, T ,CZ}:

We will now prove this.
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8/22 Universality of MBQC

Claim
There are pa�ern fragments for {H, T ,CZ}:

H ≡
(x, z)← ∗; a← 0

c ← 0

∗ ← (ξ, ζ) e← 0

b← 0

d ← 1

where

{
ξ = a + b + c + d + z + 1

ζ = c + d + e + x + 1

We will now prove this.
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8/22 Universality of MBQC

Claim
There are pa�ern fragments for {H, T ,CZ}:

T ≡
(x, z)← ∗; a← 0

c ← 0

∗ ← (ξ, ζ) e← b + x

b← 1

d ← 0

where

{
ξ = c + d + z + 1

ζ = a + c + d + e + x + ξ · (b + z)

We will now prove this.
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8/22 Universality of MBQC

Claim
There are pa�ern fragments for {H, T ,CZ}:

CZ ≡
(x2, z2)← ∗∗ ← (ξ2, ζ2)

b← 0

∗ ← (ξ1, ζ1) (x1, z1)← ∗

a← 1

where


ξi = xi

ζ1 = a + b + 1 + z1 + x2

ζ2 = a + b + 1 + z2 + x1

We will now prove this.
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Claim
There are pa�ern fragments for {H, T ,CZ}:

CZ ≡
(x2, z2)← ∗∗ ← (ξ2, ζ2)
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ZX-Calculus
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9/22
Introducing ZX-notation
Meet the spiders

Z
m

n
(α) := .

.

.

.

.

.

α nm

= z⊗n

0
(z†

0
)⊗m + e

iα z⊗n

1
(z†

1
)⊗m,

X
m

n
(α) := .

.

.

.

.

.

α nm

= x⊗n

0
(x†

0
)⊗m + e

iα x⊗n

1
(x†

1
)⊗m

They compose horizontally & vertically.
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10/22
States & Gates in ZX-notation
. . . and the ambiguous flow of time

Ignoring constants,

states: zb = bπ , xb = bπ

gates:

Z
b = bπ , X

b = bπ

H ≡ = −π
2

−π
2

−π
2

CX = =
!≡
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11/22
Introducing ZX-Calculus
Dance of the spiders

α

β

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

lk

nm

(f )

= .
.
.

.

.

.

α+ β l + nk + m

.

.

.

απ
(π)

=
.
.
.

−α

π

π

π

.

.

.

α
(c)

= .
.
.
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Introducing ZX-Calculus
Dance of the spiders

(x)

=

.

.

.

α
(h)

= .
.
.

α

(v)

=

(i)

=

(h) & (v) =⇒ colour-inversions of all rules

only topology matters
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12/22 “Only Topology Ma�ers”

Bell state: ≡ = z⊗2

0
+ z⊗2

1
“cup”

Bell effect: ≡ = (z†
0
)⊗2 + (z†

1
)⊗2

“cap”

Yanking identity:

(f )
=
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Cups/caps can:

1 convert inputs←→ outputs:

7−→

7−→
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∗

∗

†

†
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12/22 “Only Topology Ma�ers”

Cups/caps can:

3 bend spider legs:

.

.

.

.

.

.

α nm (f )
=

.

.

.

.

.

.

α nm

=⇒ we can “reorder” connected spiders!
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13/22
The Power of Pictures
Can we do everything in ZX-Calculus?

Theorem (Universality of ZX-notation)

All

 pure states

quantum gates

measurements*

 can be expressed in ZX-notation.

Indeed,

{
quantum

circuits

}
⊂
{

ZX-diagrams

}

Theorem (Soundness of ZX-Calculus)diagram A

ZX-calculus

=
diagram B

 =⇒

matrix A

=
matrix B


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Can we do everything in ZX-Calculus?

Theorem (Universality of ZX-notation)

All

 pure states

quantum gates

measurements*

 can be expressed in ZX-notation.

Indeed,

{
quantum

circuits

}
⊂
{

ZX-diagrams

}

Theorem (Soundness & Completeness of ZX-Calculus)diagram A

ZX-calculus*

=
diagram B

 ⇐⇒

matrix A

=
matrix B


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Proving Universality

of MBQC
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14/22 Parity-Phase Gate in ZX-notation

P(α) := exp
[
−i

α

2

Z ⊗ Z

]
= e
−i

α
2


1 0 0 0

0 e
iα

0 0

0 0 e
iα

0

0 0 0 1



= CX


1 0 0 0

0 e
iα

0 0

0 0 1 0

0 0 0 e
iα

CX = CX

[
1 0

0 1

]
⊗
[

1 0

0 e
iα

]
CX

= CX (I ⊗ Z
1

1
(α)) CX

=
α
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14/22 Parity-Phase Gate in ZX-notation

P(α) = CX (I ⊗ Z
1

1
(α)) CX

=
α

= α .
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15/22 Pa�ern Fragments in ZX-notation

vertices −→ x0 =

edges −→ P(α) =
α

, for α = π
4
, π

2

measurements −→ z†
b
= bπ , x†

b
= bπ

errors −→ X
x
Z

z = xπ zπ
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16/22
Algorithms in ZX-notation
Worked example

H ≡
(x, z)← ∗; a← 0

c ← 0

∗ ← (ξ, ζ) e← 0

b← 0

d ← 1

where

{
ξ = a + b + c + d + z + 1

ζ = c + d + e + x + 1
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H ≡

(x, z)← ∗; a← 0

c ← 0

∗ ← (ξ, ζ) e← 0

b← 0

d ← 1

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in

Dario Trinchero Computing by Collapsing



16/22
Algorithms in ZX-notation
Worked example

H ≡

(x, z)← ∗; a← 0

c ← 0

e← 0

b← 0

d ← 1

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

zπxπin

in

Dario Trinchero Computing by Collapsing

hide incoming errors for now. . .



16/22
Algorithms in ZX-notation
Worked example

H ≡

(x, z)← ∗; a← 0

c ← 0

b← 0

d ← 1

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in

Dario Trinchero Computing by Collapsing



16/22
Algorithms in ZX-notation
Worked example

H ≡

(x, z)← ∗; a← 0

c ← 0

b← 0

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in

Dario Trinchero Computing by Collapsing



16/22
Algorithms in ZX-notation
Worked example

H ≡

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in

Dario Trinchero Computing by Collapsing



16/22
Algorithms in ZX-notation
Worked example

H ≡

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in

Dario Trinchero Computing by Collapsing



16/22
Algorithms in ZX-notation
Worked example

H ≡

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in

Dario Trinchero Computing by Collapsing



16/22
Algorithms in ZX-notation
Worked example

H ≡

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in

Dario Trinchero Computing by Collapsing



17/22
Checking Algorithms with ZX-Calculus
Worked example

H
?
=

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

in
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Worked example

aπ

cπ

eπ eπ

bπ bπ

dπ

π
2

π
2

π
2

π
4

π
2

out
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H
?
=

Coming up: (f ), (π), ditch constants
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Checking Algorithms with ZX-Calculus
Worked example

(a + b)π

cπ

eπ

(−1)d π
2

π
2

π
2

out

in

Dario Trinchero Computing by Collapsing

H
?
=

Coming up: (f ), (h), mod 2 trick

Note, cπ + (−1)d π
2

= (c + d + 1)π − π
2
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Checking Algorithms with ZX-Calculus
Worked example

(a + b)π

−π
2

(c + d + 1)π

eπ

−π
2

−π
2

−π
2

π
2

−π
2

−π
2

−π
2

π
2

out

in
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Checking Algorithms with ZX-Calculus
Worked example

−π
2

−π
2

−π
2

(c + d + e + 1)π

(a + b + c + d + 1)π

out

in
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Checking Algorithms with ZX-Calculus
Worked example

ζπ

ξπ

out

in
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H
X
=

(incoming errors reintroduced)



18/22
Other Universal Gates
Not-so-worked examples

T ≡
(x, z)← ∗; a← 0

c ← 0

∗ ← (ξ, ζ) e← b + x

b← 1

d ← 0

where

{
ξ = c + d + z + 1

ζ = a + c + d + e + x + ξ · (b + z)
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Other Universal Gates
Not-so-worked examples

π
2

π
2

π
2

π
4

π
2

dπcπ

aπ bπ

eπout

zπxπin

consider

cases
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Other Universal Gates
Not-so-worked examples

π
4

ξπ

ζπ

in

out
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T
X
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Other Universal Gates
Not-so-worked examples

CZ ≡
(x2, z2)← ∗∗ ← (ξ2, ζ2)

b← 0

∗ ← (ξ1, ζ1) (x1, z1)← ∗

a← 1

where


ξi = xi

ζ1 = a + b + 1 + z1 + x2

ζ2 = a + b + 1 + z2 + x1
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Not-so-worked examples

(x2, z2)← ∗∗ ← (ξ2, ζ2)

b← 0

(x1, z1)← ∗∗ ← (ξ1, ζ1)

a← 1

π
2

π
2

π
2

aπbπ

out

out z2π x2π in

z1π x1π in
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Not-so-worked examples

π
2

π
2

π
2

aπbπ

out

out z2π x2π in

z1π x1π in
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Other Universal Gates
Not-so-worked examples
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Figure: PyZX
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Figure: �antomatic
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