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Abstract

We investigate a quantum-to-classical transition which arises naturally within the fuzzy

sphere formalism for three-dimensional non-commutative quantum mechanics. We focus
on treating a two-pinhole interference con�guration within this formalism, as it provides an
illustrative toy model for which this transition is readily observed and quanti�ed. Speci�-
cally, we demonstrate a suppression of the quantum interference e�ects for objects passing
through the pinholes with su�ciently-high energies or numbers of constituent particles.

Our work extends a similar treatment of the double slit experiment, presented in [32],
within the two-dimensional Moyal plane, only it addresses two key shortcomings that
arise in that context. These are, �rstly that the interference pattern in the Moyal plane
lacks the expected re�ection symmetry present in the pinhole setup, and secondly that the
quantum-to-classical transition manifested in the Moyal plane occurs only at unrealistically
high velocities and/or particle numbers. Both of these issues are solved in the fuzzy sphere
framework.
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Opsomming

Ons ondersoek 'n kwantum-na-klassieke oorgang wat natuurlik ontstaan binne die wasige
sfeer -formalisme vir drie-dimensionele nie-kommutatiewe kwantummeganika. Ons fokus
op 'n twee-speldgat interferensie eksperiment binne hierdie formalisme, aangesien dit 'n
illustratiewe opstelling verskaf waarvoor hierdie oorgang geredelik waargeneem en gekwan-
ti�seer kan word. Spesi�ek demonstreer ons 'n onderdrukking van kwantum interferensie
vir voorwerpe wat deur die twee speldgate beweeg met voldoende hoë energieë of aantal
samestellende deeltjies.

Ons werk bou voort op 'n soortgelyke analise van die dubbelspleet-eksperiment, uit-
gevoer in [32], binne die twee-dimensionele Moyal-vlak. Dit spreek egter twee sleutelteko-
rtkominge wat in daardie konteks ontstaan aan. Eerstens, vertoon die interferensiepatroon
in die Moyal-vlak nie die verwagte re�eksie-simmetrie nie, maar dit is wel in die speldgat-
opstelling teenwoordig, en tweedens vind die kwantum-na-klassieke oorgang in die Moyal-
vlak plaas by onrealisties hoë snelhede en/of deeltjie getalle. Albei hierdie kwessies word
in die wasige sfeer-raamwerk opgelos.
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Chapter 1

Introduction

1.1 Background

Non-commutative quantum mechanics (NCQM) sets ordinary quantum mechanics within a
spacetime with non-commutative geometry. In practice, this simply means that we impose
a non-trivial commutator [x̂i, x̂j ] of coordinate operators. Aside from this, the construc-
tions are those of ordinary quantum mechanics � states are elements of a Hilbert space
like any other, and observables are Hermitian operators on that Hilbert space. However,
this description threatens to over-simplify; the non-commutativity does still have many
important implications on the structure of space at short length scales which translate into
unique attributes of NCQM when compared to ordinary quantum mechanics. In partic-
ular, non-commutativity imposes a minimum length scale, characterised by the so-called
�non-commutative parameter�. This minimum scale requires us to rethink the construction
of position eigenstates, position measurements, and wavefunctions; it ultimately requires
replacing of the very notion of a point in space with a �fuzzy� counterpart.

The idea of a non-commutative model of spacetime is not new. Snyder proposed such a
quantised spacetime as far back as 1947 [43], in an attempt to regularise �eld theories. This
idea would later be superseded by renormalisation, but other motivations for considering
such models soon arose in its place. Speci�cally, arguments presented by Doplicher et

al. [17] emphasise the need for a description of spacetime with nontrivial behaviour at
short length scales, and they propose non-commutative spacetime as a primary candidate.
Subsequent work by Seiberg et al [40], as well as Alekseev et al [4], demonstrated how
�eld theories on non-commutative space arise as certain simple limits of string theories1

� popular contenders for a quantum theory of gravity. Together, these works constitute a
compelling argument that non-commutative spacetime may play some role in a consistent
formulation of quantum mechanics and gravity.

These advances generated considerable interest in the �eld in recent years, in particular
leading to formulations of both quantum mechanics [38, 6] and quantum �eld theory [18]
on non-commutative spaces. Several classical problems from ordinary quantum mechan-
ics were translated into this framework and reexamined, including the spectrum of the
spherical well [12], and general scattering theory in three dimensions [27].

1Indeed, in the case of [4], the non-commutative space arising as a limit is the �fuzzy sphere�, which is
the space we adopt for our formalism.
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1.2. Motivation & problem statement Chapter 1. Introduction

The geometry of non-commutative spaces has also been the topic of much recent work in
pure mathematics. Most notably, work by Alain Connes [13] was able to generalise the well-
known Gelfand duality between commutative C*-algebras and locally-compact Hausdor�
spaces to the case of a non-commutative C*-algebra. Loosely speaking, a non-commutative
space can then be viewed as the formal dual of a non-commutative C*-algebra; these spaces
are equipped with generalised notions of various geometrical constructs, such as distance
measures, exterior derivatives, and so on. We do not require the full machinery of these
constructions for our investigation, but the interested reader should note that the fuzzy
space we de�ne in the next chapter is analysed within the framework of Connes in [16].

1.2 Motivation & problem statement

Despite all of the motivation for NCQM discussed above, the primary motivation for this
particular investigation has little to do with the potential relevance of NCQM to a quan-
tum theory of gravity. Instead, we are motivated primarily by recent results suggesting
that NCQM may also play a pivotal role in understanding another large open problem in
modern physics, namely the measurement problem. In essence, this problem is concerned
with the nature of a system's transition from quantum to classical behaviour. Historically,
it has been largely treated as distinct from the problem of the uni�cation of quantum
mechanics with gravity; yet, there is reason to believe that the two problems may be
related � for instance, arguments by Penrose [31] suggest that gravity may play a role
in state reduction. The connection to NCQM in particular comes in the form of a re-
cent investigation by Pittaway and Scholtz [32], which demonstrated that a continuous
quantum-to-classical transition arises naturally within the non-commutative 2D plane (the
�Moyal plane�) formalism of NCQM.

Of particular relevance to this thesis is the section of [32] in which double-slit interference
is treated within the non-commutative plane. Here it was found that the presence of
non-commutativity modi�es the standard interference pattern in a remarkable way � the
quantum e�ects are suppressed for objects passing through the slits with su�ciently-high
momenta or numbers of constituent particles. This is one manifestation of the remarkable
quantum-to-classical transition to which we alluded; it suggests that the structure of space
at the smallest length scales can play a direct role in the suppression of quantum e�ects
at larger length scales.

It is natural to wonder whether a similar quantum-to-classical transition arises in other
formalisms of NCQM, in particular in higher dimensions. Showing as much would �rstly
con�rm once and for all that the non-commutative geometry is indeed the crucial ingredient
for obtaining such an emergent transition. But even if we expect this to be the case, we may
still wonder whether there might be any signi�cant di�erences in the mechanisms behind
this transition as manifested in di�erent formalisms of NCQM. For instance, we may ask
whether the strength of the quantum suppression will, in other NCQM formalisms, scale as
a function of the same system parameters, and if so, whether the suppression will always
become apparent at similar values of these parameters.

As a matter of fact, the two-dimensional interference calculation of [32] also comes with
a number of caveats. Firstly, the commutation relations for the Moyal plane break ro-
tational symmetry (we discuss the reason for this in section 2.1.1), and as such the �nal
interference pattern fails to be symmetric under re�ection about its centre. Secondly, and
more crucially, if one supposes that the quantum-to-classical transition should occur at
non-relativistic velocities, for a number of protons on the order of Avogadro's number, one
derives the requirement that the non-commutative parameter be many orders of magni-
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Chapter 1. Introduction 1.3. Structural outline

tude larger than the Planck length � much larger than expected. Conversely, �xing the
non-commutative parameter at its expected order of magnitude sees quantum suppression
occurring only for velocities far exceeding the speed of light. As such, when it comes to the
question of whether the quantum-to-classical transition manifests at similar values of the
system parameters in every framework of NCQM, it is clear that we at least have reason
to hope for the contrary.

For all of the reasons above, it bears repeating the analysis in a three-dimensional (after
all, we live in three-dimensional space) framework of NCQM; in particular one for which
the commutation relations preserve rotational symmetry. This is our primary objective
for this investigation: to compute and interpret the interference pattern for a double-
pinhole interference setup in the three-dimensional fuzzy space formalism of NCQM (where
rotational symmetry is indeed respected). Our expectation is that the re�ection-asymmetry
in the interference pattern will be absent in three dimensions, and also that the quantum
e�ects will be more strongly suppressed than in two dimensions; that is, we expect to
be able to observe interference suppression at realistic length scales and non-relativistic
speeds. A positive result here would therefore constitute the �rst experimentally falsi�able
macroscopic predictions of the short length scale structure of space.

It is worth stressing that, as in the two-dimensional investigation of [32], the reason for
considering the double-pinhole setup in particular is merely that it serves as an excellent toy
model with which to analyse the aforementioned expected quantum-to-classical transition.
It is uniquely well-suited to this purpose for two reasons: �rstly, it is a simple enough
system for the calculation to be tractable (albeit slightly more algebraically technical in
fuzzy space than in the Moyal plane), and secondly, it is easy to identify and quantify the
e�ect of a quantum-to-classical transition for an interference setup, since such a transition
manifests simply as a suppression of the interference detected at the screen. Perhaps a
third advantage of investigating a particular (and particularly simple) experiment is that
our results are thereby made more feasibly directly testable � indeed, experiments have
already been conducted which are conceptually similar to the setup we describe, and it is
not inconceivable that very similar experiments could probe the e�ect we predict. There are
however still some challenges when it comes to comparing the outcomes of such experiments
with our predictions � we discuss this matter towards the end of section 4.5.

1.3 Structural outline

The remainder of this thesis is structured as follows. In chapter 2 we review the formalism
of fuzzy space NCQM, and derive several (known) results upon which we depend in later
calculations. In chapter 3, we review the plane- and spherical wave solutions to the non-
commutative free-particle Schrödinger equation. Chapter 4 contains our main calculation
and analysis. We calculate the interference pattern for a double-pinhole interference setup,
�rst in ordinary commutative quantum mechanics and subsequently in the fuzzy space
NCQM formalism. We verify that the non-commutative result reduces to the commu-
tative one in the appropriate �commutative limit�, and subsequently discuss the physical
implications of the result � most notably, the conditions under which the interference
suppression becomes signi�cant. Next, we explore how our result scales with multiple par-
ticles. Once we account for many particles, we are able to demonstrate that our setup
exhibits a quantum-to-classical transition already at realistic energies and length scales.
Finally, we make contact with existing experimental work, and outline a few prospects for
the future experimental realisation of our pinhole setup. In chapter 5, we summarise our
�ndings and present a few concluding remarks. There are also two appendices to which we
delegate some of the more technical aspects of the main calculation.

3



1.3. Structural outline Chapter 1. Introduction

The main �ndings of this thesis have been submitted for publication. A preprint of the
relevant paper is available on the arXiv [47].
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Chapter 2

Formalism

In this chapter we outline the fuzzy space formalism for NCQM, in particular discussing
the non-commutative analogues to each of those constructions in quantum mechanics that
ordinarily rely on the existence of position eigenstates (such as position measurement,
wavefunctions, etc). We try to motivate each of our de�nitions, of fuzzy space and subse-
quently quantum states and observables, as natural analogues of their usual commutative
counterparts.

This chapter constitutes literature review � the three-dimensional fuzzy space formalism
is well-established in existing literature [12, 37, 27, 20], and its development shares some
similarities with that of the two-dimensional Moyal plane formalism [38, 32]. That said,
we add a great deal of detail in the form of motivation and derivations. Also, some of our
conventions (such as the de�nition of our POVM in section 2.2, or our choices of state
normalisation) di�er in places from each of the respective sources, so it is still worth being
thorough in our presentation.

2.1 Non-commutative quantum mechanics

A sensible modern development [41] of commutative quantum (wave) mechanics may begin
with the following steps (though perhaps not in as many words):

1. De�ne a con�guration space, Hc, typically Hc := R3, elements of which represent
points in space.

2. De�ne quantum states as elements of a Hilbert space, Hq, typically Hq := L2(R3),
which comprises square-integrable (wave)functions over the con�guration space.

3. De�ne the (abstract) Heisenberg algebra, h, by the commutation relations

[xi, pj ] = iℏδij ,
[xi, xj ] = [pi, pj ] = 0.

These are the commutation relations that we eventually want our quantised position
and momentum components to satisfy. These commutation relations (among many
others in quantum mechanics) are derived systematically from analogous equations
in classical mechanics. To be precise, we have applied the quantisation prescription

5



2.1. Non-commutative quantum mechanics Chapter 2. Formalism

{ · , · } → 1
iℏ [ · , · ]. to the Poisson brackets (see 2.7.4 in [41], for instance),

{xi, pj} = δij ,

{xi, xj} = {pi, pj} = 0,

from classical mechanics.

4. Realise the desired commutation relations by selecting a (unitary) representation of
h in terms of operators x̂i and p̂j (called observables) on Hq.

In this case, the Stone-von Neumann theorem (see chapter 14 of [21], for instance)
ensures the uniqueness up to unitary equivalence of this representation, the standard
choice for which is the Schrödinger representation,

x̂iψ(x) := xiψ(x), p̂iψ(x) := −iℏ
∂

∂xi
ψ(x).

5. From this point, we can de�ne other observables in terms of x̂i and p̂j (ignoring
observables that pertain to internal degrees of freedom such as spin), all of which are
self-adjoint operators acting on the Hilbert space of quantum states.

Of course, this is not a complete development � it omits mention of measurement, mixed
states, dynamics, and so on. Moreover, the above description places special emphasis on po-
sition over other observables (indeed, wavefunctions are functions of position speci�cally).
In fact, this construction, often called the �coordinate representation� or �Schrödinger rep-
resentation�, is but a special case of a more representation-agnostic approach (followed
in [7], for instance) which begins instead by taking a completely abstract Hilbert space as
the space of quantum states. For a general quantum state |ψ⟩ in this abstract Hilbert space,
we can recover the wave mechanics picture (the coordinate representation) by de�ning the
corresponding wavefunction ψ(x) as the inner product

ψ(x) := ⟨x|ψ⟩ , (2.1.1)

where the states |x⟩ are the eigenstates of the position operators, x̂i |x⟩ = xi |x⟩. In this
coordinate representation, the completeness relation,∫

dx |x⟩⟨x| = 1, (2.1.2)

ensures square-integrability of the wavefunctions, since

⟨ψ|ψ⟩ =
∫
dx ⟨ψ|x⟩ ⟨x|ψ⟩ =

∫
dx ψ̄(x)ψ(x) <∞. (2.1.3)

We will see that our approach to formulating NCQM, which closely follows the construc-
tions in [38] and [37], proceeds along very similar lines to the above � we similarly establish
a con�guration space, then a quantum state Hilbert space, and �nally observables. More-
over, with the de�ning feature of NCQM being the non-commutativity of the coordinate
operators, we will prefer a more concrete construction, like the �rst one discussed above,
which explicitly places special emphasis on position and uses it to derive other observ-
ables where possible. That said, our development of NCQM will also di�er from the above
commutative approach in a few important ways:

6



Chapter 2. Formalism 2.1. Non-commutative quantum mechanics

1. The quantum state space we de�ne will not contain wavefunctions in the usual sense
of square-integrable complex-valued functions on con�guration space. Indeed, the
usual conception of wavefunctions as per (2.1.1) presents some di�culty in the non-
commutative context, owing to the lack of position eigenstates. That said, we discuss
the appropriate non-commutative analogues of such wavefunctions in section 2.2.3.

2. We will use spherical coordinates throughout; indeed, our non-commutative con-
�guration space Hc (called �fuzzy space�) already encodes positions in a radially-
symmetric manner. This presents di�culty in working with momentum operators.
In fact, even in ordinary commutative quantum mechanics, the momentum operators
fail to be Hermitian when expressed in spherical coordinates.

This is easily shown: simply write the (wave-mechanics) momentum operator p̂ =
−iℏ∇ in spherical coordinates,

p̂ = −iℏ
[
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂ϕ
ϕ̂

]
,

and consider its matrix element with respect to two l = 0 states (i.e. states whose
wavefunctions depend only on r), say |ψ⟩ and |φ⟩,

⟨ψ|p̂φ⟩ = r̂

∫
dΩ

∫ ∞
0

dr r2 ψ̄(r)

[
−iℏ ∂

∂r

]
φ(r)

= −r̂
∫
dΩ

∫ ∞
0

dr

(
∂

∂r

[
r2 ψ̄(r)

])
(−iℏ)φ(r)

= r̂

∫
dΩ

∫ ∞
0

dr r2
(
iℏ
[
2

r
+

∂

∂r

]
ψ̄(r)

)
φ(r)

̸= ⟨p̂ψ|φ⟩

where on the second line, we integrated by parts (assuming the boundary term to
vanish at in�nity). We thus identify the Hermitian conjugate of p̂, written in the co-
ordinate representation, as −iℏ [2/r + ∂/∂r] ,meaning p̂ is not Hermitian in spherical
coordinates.

As a result of this complication, we avoid writing down the momentum operators
entirely, focusing instead on angular momentum operators. This changes the algebra
of observables we will seek to represent. Additional observables should all still be
derivable from the base observables, only now these base observables will be position
and angular momentum.

3. We will start by choosing the appropriate coordinate commutation relations (this be-
ing the de�ning feature of NCQM), corresponding roughly to step 3 of the above pro-
cedure, and only thereafter retroactively select appropriate con�guration and state
spaces (corresponding to steps 1 and 2).

2.1.1 Fuzzy space

As mentioned above, our starting point is a choice of non-trivial commutation relations for
the coordinate operators. The simplest non-trivial choice would be requiring the operators
to satisfy the Heisenberg-Moyal [20] commutation relations,

[x̂i, x̂j ] = iθij , (2.1.4)

that is, having the coordinates commute up to some constant tensor, θij . This tensor must
be skew-symmetric, since the left-hand side of (2.1.4) accrues a minus sign on exchange of
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2.1. Non-commutative quantum mechanics Chapter 2. Formalism

i and j; the inclusion of a factor of i then makes the right-hand-side Hermitian. While this
choice is su�cient in two dimensions [38], the three-dimensional case requires more compli-
cated commutation relations in order for rotational symmetry to be preserved. Indeed, we
can easily see that (2.1.4) breaks rotational symmetry in any odd number of dimensions,
say 2n+1. By virtue of its skew-symmetry, the matrix θ must have a vanishing eigenvalue
as its determinant vanishes:

det θ = det
(
θT
)
= det(−θ) = (−1)2n+1 det θ = −det θ;

but then the associated eigenvector will de�ne a preferred commutative direction [12],
which is what breaks rotational symmetry. While some problems, like the Aharonov-Bohm
e�ect [8, 9] or indeed the Hydrogen atom [3, 11, 10] can nonetheless still be formulated and
examined in 3D using these symmetry-breaking commutation relations, they are usually
undesirable. For instance, as a direct consequence of their violation of rotational symmetry,
these commutation relations give rise to problematic thermodynamic behaviour, including
the failure of entropy to be extensive, and the absence of incompressibility for fermion
gasses [28].

A more appealing viable alternative, which we adopt here, is the fuzzy sphere algebra [12,
37, 27, 20], de�ned by the commutation relations

[x̂i, x̂j ] = 2iλϵijkx̂k, (2.1.5)

where λ is a constant with dimensions of length, called the non-commutative parameter.
As an abstract Lie algebra, the coordinate algebra is clearly isomorphic to su(2) via the
isomorphism x̂i 7→ λσi (where the σi are the usual Pauli matrices).

We wish to realise this algebra in terms of coordinate operators acting on some concrete
space. This amounts to a choice of Lie algebra representation. Although we eventually
want our coordinate observables to be represented on the quantum state space, we will �rst
imagine the coordinates as operators x̂i on con�guration space. The motivation for this
will soon become apparent; in essence, we will de�ne the quantum states in terms of these
coordinate operators in a manner which will subsequently allow us to �lift� each operator
x̂i to a corresponding observable X̂i acting on quantum states.

For the sake of concreteness, we adopt the Jordan-Schwinger representation (the reason
for this particular choice will shortly become apparent), where su(2) elements act on the
two-boson-mode Fock space,

F := span

{
|n1, n2⟩ ≡

(a†1)
n1(a†2)

n2

√
n1!n2!

|0⟩

∣∣∣∣∣ n1, n2 ∈ N

}
,

via the Lie algebra homomorphism sending each matrix X ∈ su(2) to the bilinear operator

a†µXµνaν acting on F (this homomorphism is called the �Jordan map� [39]). Here a†µ and
aµ (for µ = 1, 2) are the standard creation and annihilation operators respectively, and
|0⟩ ≡ |0, 0⟩ ∈ F is the vacuum state of the Fock space. In particular, if we consider
our coordinates as su(2) matrices, using the Lie algebra isomorphism x̂i 7→ λσi, they are
represented under the Jordan map as the operators

x̂i = λa†µσ
i
µνaν . (2.1.6)

As an su(2)-representation, F is reducible, decomposing as usual into a direct sum of irreps,

F =
⊕
n∈N
Fn, where Fn := span {|n1, n2⟩ ∈ F | n1 + n2 = n} . (2.1.7)
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Chapter 2. Formalism 2.1. Non-commutative quantum mechanics

Of course, since SU(2) is simply-connected, its (irreducible) representations are in a one-
to-one correspondence with those of su(2), and so each Fn can just as well be considered
as a (indeed, up to isomorphism, the unique) (n+ 1)-dimensional SU(2) irrep [22].

Each irrep Fn is indexed by (indeed, an eigenspace of) the su(2) Casimir operator, r̂2 =

x̂ix̂i, which can be rewritten in terms of the boson number operator, n̂ = a†µaµ, according
to

r̂2 = λ2(a†ασ
i
αβaβ)(a

†
µσ

i
µνaν)

= λ2a†αaβa
†
µaν(2δανδβµ − δαβδµν)

= λ2(2a†αaβa
†
βaα − a

†
αaαa

†
µaµ)

= λ2(2a†αaβ(aαa
†
β − [aα, a

†
β])− n̂

2)

= λ2(2a†αaα(aβa
†
β − 1)− n̂2)

= λ2(2n̂(n̂+ [aβ, a
†
β]− 1)− n̂2)

= λ2n̂(n̂+ 2).

In the above, we have invoked the completeness relation for the Pauli matrices,

σαβ · σµν = 2δανδβµ − δαβδµν , (2.1.8)

along with the standard commutation relations for creation and annihilation operators,

[aµ, a
†
ν ] = δµν

[aµ, aν ] = 0 = [a†µ, a
†
ν ].

(2.1.9)

It is convenient to consider the square root (to leading order in λ) of the Casimir operator
as a measure of radius, given by

r̂ = λ(n̂+ 1), (2.1.10)

which has the required dimensions of length. With this identi�cation, we note that F
contains every unique su(2)-irrep, and hence each quantised radius, exactly once. This
motivates our choice of the Jordan-Schwinger representation: we can think of F as repre-
senting a construction of 3D space out of a collection of concentric spherical shells � one
for each quantised radius.

We take the Fock space F , called fuzzy space, as our con�guration space, Hc. We write
its general element as a ket, |ψ⟩, in standard Dirac notation, consistent with the notation
used above. We stress two conceptual points pertaining to Hc. The �rst likely goes
without saying: though we have referred to Hc as a �two-boson-mode Fock space�, and will
occasionally reference related quantities such as boson number, creation operators, and so
on, we should remember that the states in Hc do not count actual bosons in our system �
the Fock space is merely a convenient concrete choice of vector space on which to represent
our coordinates. Secondly, when describing the development of commutative quantum
mechanics at the beginning of this chapter, we described elements of the con�guration space
as representing �points in space�. Above, we conceptualised Hc as a sort of construction of
3D space out of concentric shells, but at the moment it is still unclear which elements of
Hc precisely should stand in for individual points in space. These will turn out to be the
coherent states, z, but we will defer a thorough discussion of them to section 2.2.1.
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2.1. Non-commutative quantum mechanics Chapter 2. Formalism

2.1.2 Quantum state space

Our quantum state (Hilbert) space, Hq, is de�ned as the operator algebra acting on Hc

generated by the coordinates. We denote its elements with the notation |ψ) to distinguish
them from those of Hc. The inner product on Hq is chosen to be the weighted Hilbert-
Schmidt inner product1

(ψ|ϕ) := 4πλ2Trc

(
ψ†r̂ϕ

)
= 4πλ3Trc

(
ψ†(n̂+ 1)ϕ

)
, (2.1.11)

where the trace Trc is performed over con�guration space Hc. Using this inner product,
we can characterise Hq as the space of Hilbert-Schmidt operators on Hc which commute
with the Casimir operator [37] (as each of the coordinates generating Hq commutes with
r̂2), and express it in the form

Hq =

{
ψ ≡

∑
mi,ni

Cm1,m2
n1,n2

(a†1)
m1(a†2)

m2an1
1 a

n2
2

∣∣∣∣∣ ∥ψ∥ <∞, m1 +m2 = n1 + n2

}
,

(2.1.12)
where ∥ψ∥ := (ψ|ψ) uses the inner product of (2.1.11). In the above, the condition m1 +
m2 = n1 + n2 ensures commutation with r̂2.

We will sometimes consider operators in the larger space, B2(Hc) ⊃ Hq, consisting of
all Hilbert-Schmidt operators (not only those commuting with the Casimir) acting on Hc

(with the same inner product as on Hq). It can be shown [14] that B2(Hc) is also a Hilbert
space with respect to the same inner product as de�ned in (2.1.11). Moreover, we have an
isometric isomorphism (see section 2.6 of [23]),

B2(Hc) ∼= Hc ⊗H∗c , (2.1.13)

where ⊗ denotes the Hilbert-space tensor product � for Hilbert spaces A and B, A⊗B is
de�ned as a completion of the algebraic tensor product A⊗alg B with respect to the inner
product induced on A ⊗alg B by those on each of A and B (for full details see [23], for
instance). This identi�cation lets us consider an everywhere-dense subset of B2(Hc) as
linear combinations of ket-bras:

B2(Hc) = span {|m1,m2⟩⟨n1, n2| | ni,mi ∈ N}, (2.1.14)

where the overbar denotes the completion. For brevity (and because for our physics it
su�ces to work on a dense subset), we will hereafter suppress writing (and remarking on)
the completion.

The restriction of having to commute with r̂2 forces operators in Hq to restrict to each of
the subspaces Fn in (2.1.7). Explicitly this means

Hq =
⊕
n∈N

B2(Fn) ⊂ B2

(⊕
n∈N
Fn

)
= B2(Hc), (2.1.15)

which we can write in the simpler notation of (2.1.14) as

Hq = span {|m1,m2⟩⟨n1, n2| | ni,mi ∈ N, n1 + n2 = m1 +m2} , (2.1.16)

1This particular inner product is chosen so that the resulting norm of the projection operator, P̂N , onto
the subspace F0 ⊕ · · · ⊕ FN ⊆ Hc tends to the volume, 4πr3, of the sphere of radius r = λ(N + 1), as
N → ∞ [20].
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Chapter 2. Formalism 2.1. Non-commutative quantum mechanics

recalling from (2.1.7) the constraint de�ning each Fn. This is a fairly simple picture of
our quantum states. Of course, each ket |n1, n2⟩ ∈ Hc is also a simultaneous eigenket of
r̂2 = x̂µx̂µ and x̂3:

r̂2 |n1, n2⟩ = 4λ2 j(j + 1) |n1, n2⟩ , where j =
n1 + n2

2

x̂3 |n1, n2⟩ = 2λm |n1, n2⟩ , where m =
n1 − n2

2
,

(2.1.17)

allowing us to alternately label using quantum numbers j and m, which, wherever they
appear, (implicitly) range over j ∈ N/2 andm ∈ Z/2∩[−j, j]. In this notation, we can write
each su(2)-irrep Fn appearing in the decomposition of (2.1.7) as Fn = span {|j = n/2,m⟩} ,
and (2.1.16) is simply

Hq = span
{∣∣j = n/2,m

〉〈
j = n/2,m′

∣∣ ∣∣ n ∈ N
}
. (2.1.18)

2.1.3 Quantum observables in fuzzy space

With our con�guration- and state spaces de�ned, we must now de�ne quantum observables.
As in the commutative case, these will be Hermitian operators on Hq, and we similarly
begin by seeking the operators corresponding to position and angular momentum. For this
we must identify a unitary representation of the algebra

[Xi, Xj ] = 2iλ ϵijkXk,

[Li, Xj ] = iℏ ϵijkXk,

[Li, Lj ] = iℏ ϵijkLk,
(2.1.19)

in terms of operators, X̂i and L̂j respectively, acting on Hq (we use capital letters to
distinguish observables from operators on Hc). Note that this algebra is a straightfor-
ward modi�cation of the usual algebra of coordinate and angular momentum components
from commutative quantum mechanics; the only change is that we now demand the same
coordinate commutation relations as in (2.1.5), rather than the typical [Xi, Xj ] = 0.

Representing the position operators X̂i is straightforward, as they share commutation
relations with the coordinates xi:

X̂i |ψ) := |x̂iψ) . (2.1.20)

This is what was meant in section 2.1.1 by �lifting� the algebra of the operators x̂i to
the observables � the multiplicative action trivially ensures identical commutation rela-
tions. This action mirrors the usual left-multiplicative action of position operators in the
Schrödinger representation of commutative quantum mechanics, x̂i ψ(x) := xi ψ(x). We
also lift the radius operator r̂ to an observable by the same multiplicative action

R̂ |ψ) := |r̂ψ) . (2.1.21)

Angular momentum operators have the adjoint action,

L̂i |ψ) :=
∣∣∣∣ ℏ2λ [x̂i, ψ]

)
, (2.1.22)

which is easily shown to yield the normal angular momentum commutation relations.

Some other observables are straightforward generalisations of their commutative counter-
parts. For instance, the Hamiltonian takes a familiar form

Ĥ = − ℏ2

2m
∆̂ + V (R̂), (2.1.23)

11



2.2. Position measurement & related matters Chapter 2. Formalism

only now the Laplacian is de�ned

∆̂ |ψ) := −
∣∣∣∣ 1λr̂ [a†α, [aα, ψ]]

)
. (2.1.24)

This form of the Laplacian is motivated in [20]; in particular, it is chosen to commute
with each of the angular momentum operators. Notably, since they commute with ∆̂,
the angular momentum operators also commute with Ĥ, ensuring angular momentum
conservation.2

Another conserved observable, de�ned on the entirety of B2(Hc), is

Γ̂ |ψ) := |[n̂, ψ]) . (2.1.25)

This is indeed an observable (that is, a Hermitian operator), since(
ϕ
∣∣∣Γ̂ψ) = 4πλ2Trc

(
ϕ†r̂ [n̂, ψ]

)
= 4πλ2Trc

([
ϕ†, n̂

]
r̂ψ
)

= 4πλ2Trc

(
[n̂, ϕ]† r̂ψ

)
=
(
Γ̂ϕ
∣∣∣ψ) ,

where we have used the fact that [r̂, n̂] = 0, together with properties of the trace. Therefore
we can write a basis for B2(Hc) consisting of eigenvectors for Γ̂. Indeed, the eigenstates
of Γ̂ are simply those of the form |m1,m2⟩⟨n1, n2|, since

Γ̂ |m1,m2⟩⟨n1, n2| = (m1 +m2 − n1 − n2) |m1,m2⟩⟨n1, n2| ,

and these states manifestly span (a dense subset of) B2(Hc), since B2(Hc) ∼= Hc⊗H∗c , as
noted above. Then (2.1.16) implies that the physical subspace, Hq, of B2(Hc) is simply
the zero eigenspace (or kernel) of Γ̂. The fact that Γ̂ is conserved then simply reassures us
that the physical subspace Hq is preserved under time-evolution.

Finally, the linear operator

Q̂ :=
1

2π

∫ 2π

0
eiϕΓ̂ dϕ, (2.1.26)

is easily seen by the spectral theorem to just be the projection operator from B2(Hc) onto
ker Γ̂ ∼= Hq. This projection operator will prove useful in section 2.2 for de�ning position
measurement.

2.2 Position measurement and related matters

At this stage, we have a completely valid starting point for doing quantum mechanics. Our
quantum states are elements of some Hilbert space, Hq, and our observables are Hermitian
operators on that Hilbert space. This is the typical structure � the internal details of the
Hilbert space Hq are essentially irrelevant to the abstract formulation (as in, say, [7]) of
quantum mechanics. So at this stage, one might wonder why we have gone to great lengths
to explicitly construct Hc and Hq, and, for that matter, how NCQM di�ers at all from the
ordinary formalism of quantum mechanics on an abstract Hilbert space of states.

2This is because the time evolution operator takes the usual form, Û(t) := e−iĤt/ℏ, so that, as in
commutative quantum mechanics, an observable Ô commuting with Ĥ implies its conservation. Indeed,
using the Heisenberg picture of time evolution, we have Ô(t) = Û†(t)ÔÛ(t) = �����

Û†(t)Û(t)Ô = Ô(t = 0).
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To the latter question, we might point out that, from an abstract mathematical perspective,
NCQM ultimately is ordinary quantum mechanics; it di�ers from the usual framework only
in how it handles position, position measurements, and wavefunctions � those matters that
rely normally on the existence of commuting coordinates. These are more di�erences in
our physical interpretation of the underlying mathematical structure (which observables
we call �position�, how we measure them, and so on) than in said structure itself. This
also serves to answer the former question: we explicitly construct the spaces Hc and Hq

for added convenience in performing calculations, and physically interpreting the results
of those calculations, especially when said calculations pertain to position.

In this section, we turn our attention to the remaining subtleties (in a sense, the de�ning
subtleties) of NCQM, namely the matters of position � speci�cally we formulate position
measurement, and coordinate representations of states (the analogues of wavefunctions).
The main obstacle to the usual formulation is the following: since our position operators
X̂i do not commute, they have no simultaneous eigenbasis, meaning there are no fully-
localised position eigenstates of the form |x). In the absence of fully-localised states, we
strive instead for maximally-localised � alternately, minimal-uncertainty � states.

Since our position observables X̂i share commutation relations with the operators x̂i, we
will start by formulating the minimal-uncertainty states of the x̂i. It is well known [25]
that the Glauber coherent states |z⟩ suit this purpose, so we will start by reviewing their
pertinent properties, all of which can be found in [25]. In subsequent sections we will
outline position measurement, and �nally lift the coherent states |z⟩ ∈ Hc to analogous
states |z) ∈ Hq that will be used to de�ne the coordinate representations of states.

2.2.1 Coherent states

The Glauber coherent states, written

|z⟩ ≡ |z1, z2⟩ , for z =

[
z1
z2

]
∈ C2,

are de�ned to be eigenstates of the annihilation operators, aα |z⟩ = zα |z⟩ . Such eigenstates
can be constructed by application of the displacement operator, de�ned

D̂(z) := ezαa
†
α−z̄αaα , (2.2.1)

on the vacuum state, |z⟩ = D̂(z) |0⟩. For our purposes, we prefer the alternative form

|z⟩ = D̂(z) |0⟩

= e
− 1

2

[
zαa

†
α,−z̄βaβ

]
ezαa

†
α����
e−z̄αaα |0⟩

= e−
1
2
z̄αzαezαa

†
α |0⟩ ,

(2.2.2)

in which the operator acting on the vacuum state contains no explicit annihilation opera-
tors. It is easy to con�rm directly that this construction satis�es the de�nition:

aβ

(
e−

1
2
z̄αzαezαa

†
α

)
|0⟩ = e−

1
2
z̄αzα

[
aβ, e

zαa
†
α

]
|0⟩

= zβ

(
e−

1
2
z̄αzαezαa

†
α

)
|0⟩ .

The commutator above is easily computed from (2.1.9), together with the fact that [Ĵ , K̂] =
c1 implies [Ĵ , f(K̂)] = cf ′(K̂) (easily proven by induction using the Leibniz rule).
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The coherent states are normalised (as constructed above), but not orthogonal (since the
ai are not self-adjoint, their eigenstates need not be orthogonal), with their overlap given
by 〈

z
∣∣z′〉 = e−

1
2
(z̄αzα+z̄′αz

′
α−2z̄αz′α) = e−

1
2(∥z∥

2+∥z′∥2)+z†z′
. (2.2.3)

Finally, the coherent states form an overcomplete basis for Hc, which is expressed by the
resolution of the identity operator, 1c, on Hc as∫

d4z

π2
|z⟩⟨z| = 1c, (2.2.4)

where the integral measure d4z, sometimes also written dz̄1dz1dz̄2dz2 in the literature, is
shorthand for dRe(z1)d Im(z1)dRe(z2)d Im(z2).

2.2.2 Position measurement POVM

We will now turn our attention to de�ning position measurement. To this end, we will use
the framework of Positive-Operator-Valued Measure (POVM) measurement (see section
2.2.6 of [30], for a good introduction to this framework). At this stage, we should note
that our choice of su(2) coherent states, as de�ned in the previous section, di�ers slightly
from that in [27], wherein states of the form |n, z⟩ are used, with the radius �xed by the
choice of n. Instead, our coherent states coincide with those used in [37], but this latter
source does explicitly not use its coherent states for the sake of furnishing a POVM for
position measurement. The construction we describe in this section therefore mimics that
of [27], but also di�ers super�cially in places due to the di�erent choices of convention. This
disparity is compounded by the fact that the POVM de�nition in [27] (given in equation
17) makes use of a star product, while our de�nition (given in (2.2.7) below) does not. To
help bridge this notational gap, we will also derive a form of our POVM operators involving
a star product, although we only do so in section 2.2.3 (speci�cally, see (2.2.17)).

Our construction starts with the use of coherent states to represent points in space: the two
complex values, z1 and z2, needed to specify a coherent state together provide su�cient
degrees of freedom to encode a point in three-dimensional space. More precisely, for the
sake of describing a position measurement occurring at a point, D ∈ R3, we will encode
the spherical coordinates (r, θ, ϕ) of D in the values

z1 =

√
r

λ
cos

(
θ

2

)
e−i

ϕ
2 eiγ , and z2 =

√
r

λ
sin

(
θ

2

)
ei

ϕ
2 eiγ . (2.2.5)

of a coherent state |z⟩. Hereafter we adopt the notation R := r
λ , for the dimensionless

radius. The encoding is such that the expectation values,

⟨z|x̂i|z⟩ = λ ⟨z|a†µσiµνaν |z⟩
= λ z†µσ

i
µνzν

= λ z†σiz,

reproduce the (Cartesian) coordinates of D:

x1 ≡ ⟨z|x̂1|z⟩ = r sin θ cosϕ

x2 ≡ ⟨z|x̂2|z⟩ = r sin θ sinϕ

x3 ≡ ⟨z|x̂3|z⟩ = r cos θ.

Notably, the global phase γ drops out of each of the above (as it must), and so constitutes
an additional degree of freedom when choosing the zi.

14



Chapter 2. Formalism 2.2. Position measurement & related matters

Of course, this notion of position exists on the level of the con�guration space, Hc; we seek
to lift it to a corresponding notion of position on the level of the quantum Hilbert space,
Hq. To this end, �rst introduce corresponding states |z1, z2, n1, n2) ∈ B2(Hc), de�ned

|z1, z2, n1, n2) :=
1√

4πλ2r̂
|z⟩⟨n1, n2| ,

where the inverse square-root is included for the sake of normalisation:

(z1, z1, n1, n2|z1, z1, n1, n2) = 4πλ2Trc

(
|n1, n2⟩⟨z|

1

4πλ2r̂
r̂ |z⟩⟨n1, n2|

)
= 1.

Clearly these states do not commute with n̂, and so are not physical (meaning they do
not lie in the quantum state space, Hq ≡ ker Γ, for Γ as in (2.1.25)). In order to obtain
physical states in Hq, we can apply the projection operator Q̂, as de�ned in (2.1.26),

|z1, z2, n1, n2)ph := Q̂ |z1, z2, n1, n2)

= Q̂
1√

4πλ2r̂
|z⟩⟨n1, n2| .

(2.2.6)

Of course, due to the application of the projection operator, Q̂, the states |z1, z2, n1, n2)ph
are no longer normalised in general. For our purposes, this is thankfully not a problem,
but to explain why, we must �rst formulate the de�nition of our POVM operators.

Using the physical states of (2.2.6), we are �nally able to de�ne position measurements.
As stated above, we use the framework of POVM measurement, whereby we specify a set
of positive operators on Hq,

Π̂z :=
∑
n1,n2

|z1, z2, n1, n2)ph ph(z1, z2, n1, n2|. (2.2.7)

These are clearly Hermitian and positive semi-de�nite (but not orthogonal), as required
for a POVM. The other requirement for a POVM is that the Π̂z operators satisfy a com-
pleteness relation on Hq, of the form∫

d4z

π2
Π̂z = Q̂ = 1q. (2.2.8)

At this point, we can appreciate why the normalisation of the states in (2.2.6) is non-

essential. The additional application of Q̂ in (2.2.6) simply causes the integral
∫
d4z
π2 Π̂z to

equal Q̂ instead of the identity operator. But this is �ne, since Q̂ = 1q (the identity on
the physical subspace Hq), and we are ultimately only interested in the behaviour on Hq.
Proving (2.2.8) and other equations like it is straightforward, but potentially error-prone.
In particular, we must be careful to remember that the bra ph(z1, z2, n1, n2| represents a
more subtle object than the Hermitian conjugate (on the level of Hc),

|n1, n2⟩⟨z|
1√

4πλ2r̂
Q̂,

of the right-hand-side of (2.2.6); indeed, this bra instead represents the linear functional,

ph(z1, z2, n1, n2| : Hq → C : |ψ)→ 4πλ2Trc

(
|n1, n2⟩⟨z|

1√
4πλ2r̂

Q̂ r̂ ψ

)
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as per the inner product, (2.1.11). The easiest way to check (2.2.8) (and other such
equations where bras on Hq appear outside of an inner product) without confusion is
therefore by acting the left-hand-side on an arbitrary physical state |ψ),(∫

d4z

π2
Π̂z

)
|ψ) =

∫
d4z

π2

∑
n1,n2

|z1, z2, n1, n2)ph ph(z1, z2, n1, n2|ψ).

Next, simplify the inner product using (2.2.6) and (2.1.11),

ph(z1, z2, n1, n2|ψ) = (z1, z2, n1, n2|Q̂†|ψ)
= (z1, z2, n1, n2|ψ)

= 4πλ2Trc

(
1√

4πλ2r̂
|n1, n2⟩⟨z| r̂ψ

)
= 4πλ2 ⟨z| 1√

4πλ2r̂
r̂ψ|n1, n2⟩ ,

(2.2.9)

whence(∫
d4z

π2
Π̂z

)
|ψ) = 4πλ2

∫
d4z

π2

∑
n1,n2

Q̂
1√

4πλ2r̂
|z⟩⟨n1, n2| · ⟨z|

1√
4πλ2r̂

r̂ψ|n1, n2⟩

= 4πλ2Q̂
1√

4πλ2r̂

(∫
d4z

π2
|z⟩⟨z|

)
1√

4πλ2r̂
r̂ψ

(∑
n1,n2

|n1, n2⟩⟨n1, n2|

)
= Q̂ψ = ψ,

(2.2.10)

where we have inserted (2.2.6) and (2.2.9), then rearranged, and �nally applied complete-
ness relations (2.2.4) and

∑
n1,n2

|n1, n2⟩⟨n1, n2| = 1c. This completes the proof that the

operators Π̂z indeed form a POVM.

Given the POVM operators, the probability density function (PDF) associated with mea-
suring a particle having initial density matrix ρ at the point D is given by the usual Born
rule,

P (D) = Trq

(
Π̂zρ

)
, (2.2.11)

which is nothing but the usual Born rule for POVM measurement [30]. The subscript on
Trq indicates that the trace is taken over Hq. Of particular interest to us is the special
case of (2.2.11) where the pre-measurement density matrix is a pure state, ρ = |ψ)(ψ|. In
this case, the Born rule reduces to

P (D) = (ψ|Π̂z|ψ)

=
∑
n1,n2

(ψ|z1, z2, n1, n2)ph ph(z1, z2, n1, n2|ψ)

= (4πλ2)2
∑
n1,n2

⟨z| 1√
4πλ2r̂

r̂ψ|n1, n2⟩ ⟨n1, n2|ψ†r̂
1√

4πλ2r̂
|z⟩

= 4πλ2 ⟨z|ψr̂ψ†|z⟩ ,

(2.2.12)

where we have substituted the inner products computed in (2.2.9),and used the fact that
ψ commutes with r̂, since |ψ) ∈ Hq. As expected, P (D) is independent of the global
phase γ in (2.2.5), and furthermore the normalisation of |ψ) implies the normalisation of
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the probability distribution:

1 = (ψ|ψ) = 4πλ2Trc

(
ψ†r̂ψ

)
= 4πλ2

∫
d4z

π2
⟨z|ψr̂ψ†|z⟩ ,

where we identify the integral as running over the probability distribution, as per (2.2.12).

Of course, the normalised pure state ψ has dimension length−3/2, implying that P (D) is
dimensionless. We may therefore wonder how it relates to a spatial probability density
with dimension length−3. For this we rewrite the integration measure in terms of explicit
coordinates (r, θ, ϕ, γ), computing the relevant Jacobian from (2.2.5),

d4z

π2
≡ dRe(z1)d Im(z1)dRe(z2)d Im(z2)

π2
=
r sin θ

8π2λ2
drdθdϕdγ. (2.2.13)

Therefore, ∫
d4z

π2
P (D) = 4πλ2

∫
d4z

π2
⟨z|ψr̂ψ†|z⟩

= 4πλ2
∫
r sin θ

8π2λ2
drdθdϕdγ ⟨z|ψr̂ψ†|z⟩

=

∫
r2 sin θ drdθdϕ

⟨z|ψr̂ψ†|z⟩
r

,

which leads to the interpretation of

1

4πrλ2
P (D) ≡ ⟨z|ψr̂ψ

†|z⟩
r

as the spatial probability density function that we sought. This distinction is actually
very important, for instance when comparing the measurement PDF derived in NCQM
with that derived in ordinary commutative quantum mechanics (the latter being a spatial
density). In our investigation, this will become relevant in section 4.4.1, where we check
that the commutative limit of the fuzzy space interference pattern derived in section 4.2
coincides with the commutative result from section 4.1. We must take such a commutative
limit on the level of the spatial density, 1

4πrλ2
P (D), to have the correct units (and thus

any hope of agreement).

2.2.3 Coordinate representation

We have yet to formulate the analogues of wavefunctions � that is, coordinate represen-
tations of states. We saw in section 2.2.2 how coherent states can encode positions (see
(2.2.5)) and de�ne position measurements (see (2.2.7) and (2.2.11)). If we could lift this
position encoding from coherent states |z⟩ ∈ Hc to corresponding states |z) ∈ Hq, we could
then de�ne the coordinate representation of a state |ψ) ∈ Hq by ψ(z) := (z|ψ) , resembling
the approach of commutative quantum mechanics, as per (2.1.1). Furthermore, as long as
our position-encoding states |z) satisfy a completeness relation analogous to (2.1.2), we
immediately get that a coordinate representation ψ(z) is square-integrable by an identical
argument to (2.1.3).

Now, in writing down our POVM in (2.2.7), we have already encountered one possible way
of �lifting� coherent states to states in Hq, namely the states |z1, z2, n1, n2)ph of (2.2.6).
Indeed, these states possess many of the same desiderata we now seek to ful�l � they lift
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the coordinate encoding to Hq, and satisfy completeness relation (2.2.8) � but they carry
an undesired additional dependence on n1 and n2. Eliminating these labels will force us to
adopt a non-trivial product between coordinate-represented states (which of course must
be non-commutative). We set about eliminating this n1 and n2 dependence.

As a �rst step we rewrite the trace in (2.2.7) instead as an integral running over coherent
states. Speci�cally, start by rearranging Π̂z |ψ) (for arbitrary |ψ) ∈ Hq) exactly as in
(2.2.10),

Π̂z |ψ) = 4πλ2Q̂
1√

4πλ2r̂
|z⟩⟨z| 1√

4πλ2r̂
r̂ψ

(∑
n1,n2

|n1, n2⟩⟨n1, n2|

)
,

then invoke (2.2.4) to replace the parenthesised expression by an integral,

∑
n1,n2

|n1, n2⟩⟨n1, n2| = 1c =

∫
d4w

π2
|w⟩⟨w| ,

over new coherent states |w⟩, and �nally reorder once more to obtain

Π̂z =

∫
d4w

π2
|z,w)ph ph(z,w|. (2.2.14)

Here, the states |z,w)ph are de�ned in the expected way,

|z,w)ph := Q̂
1√

4πλ2r̂
|z⟩⟨w| . (2.2.15)

Of course, at this stage we have not accomplished much � we have removed the ni de-
pendence from the states appearing in Π̂z, but at the cost of introducing a wi dependence.
The motivation for our rewriting is that it enables use of calculus techniques, by which
we are in fact able to completely perform the integral in (2.2.14), thus removing all wi
dependence. The trick is to shift the integral with the substitution v := w − z,

Π̂z =

∫
d4v

π2
|z, z + v)ph ph(z, z + v|, (2.2.16)

and rewrite the result in terms of translation operators acting on |z, z)ph. The relevant
operators are found by noting that

∂zα |z⟩⟨z| = ∂zα

[
e−z̄βzβezβa

†
β |0⟩⟨0| ez̄βaβ

]
= (−z̄α + a†α) |z⟩⟨z| ,

by (2.2.2), and so

evα∂zα |z⟩⟨z| = evαa
†
α−vαz̄α |z⟩⟨z|

= e−vαz̄αe−
1
2
z̄αzαevαa

†
αezαa

†
α |0⟩⟨z|

= e
1
2
(v̄αvα+v̄αzα−vαz̄α) |z + v⟩⟨z| .

Inserting such translation operators into (2.2.16) simpli�es it to

Π̂z =

∫
d4v

π2
e−

1
2
(v̄αvα+���v̄αzα−���vαz̄α )e−

1
2
(v̄αvα+���vαz̄α−���v̄αzα ) |z, z)ph ev̄α

←−
∂ z̄αevα

−→
∂zα

ph(z, z|

≡ |z) ⋆̄ (z| ,
(2.2.17)
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where the states |z) ≡ |z, z)ph are, in fact, exactly those we set out to �nd. We have also
introduced the �star-product�,

⋆̄ :=

∫
d4v

π2
e−v̄αvαev̄α

←−
∂ z̄αevα

−→
∂zα ,

the form of which can be simpli�ed further by explicitly performing the remaining Gaussian
integrals; setting vi ≡ xi + iyi for xi, yi ∈ R, we have

⋆̄ =

2∏
i=1

∫
dxi√
π
e−x

2
i+xi(

−→
∂zi+

←−
∂ z̄i )

∫
dyi√
π
e−y

2
i +iyi(

−→
∂zi−

←−
∂ z̄i )

=
2∏
i=1

exp

[
1

4
(
−→
∂ zi +

←−
∂ z̄i)

2

]
exp

[
−1

4
(
−→
∂ zi −

←−
∂ z̄i)

2

]

=
2∏
i=1

exp
[←−
∂ z̄i
−→
∂ zi

]
= exp

[←−
∂ z̄α
−→
∂ zα

]
,

(2.2.18)

where Einstein summation convention only applies to the repeated α-indices in the last line.
In fact, this product is exactly the conjugate (treating di�erential operators as Wirtinger

derivatives [24]) of the well-known Voros product (2.16 in [5]), ⋆ := exp
[←−
∂ zα
−→
∂ z̄α

]
, as

suggested by the overbar. As mentioned earlier, the form of the Πz as given by (2.2.17)
more closely resembles the de�nition of the POVM operators from other sources like [27].
Finally, in this notation, the completeness relation of (2.2.8) becomes∫

d4z

π2
|z) ⋆̄ (z| = 1q, (2.2.19)

giving a sort of star-product completeness of the states |z), which resembles the complete-
ness of normal coherent states |z⟩, as per (2.2.4).

In summary, we de�ne the coordinate representation of a state |ψ) by

ψ(z) := (z|ψ) = ⟨z|
√
4πλ2r̂ ψ|z⟩ . (2.2.20)

in complete analogy with (2.1.1). This de�nes ψ(z) as a function of two complex variables,
which can alternatively be considered a function on R4. However, if we parameterise z1 and
z2 as in (2.2.5), then we observe that ψ(z) is actually independent of γ (being of a similar
form, when written out, to (2.2.12)), making it a function on C2/U(1) ∼= R3, as expected.
As alluded to earlier, the expected square-integrability of the coordinate representation
is automatically implied by the �niteness of the operator norm, ∥ψ∥; we simply invoke
(2.2.19) to insert the identity in the operator inner product (much as in (2.1.3)),

(ψ|ψ) =
∫
d4z

π2
(ψ|z) ⋆̄ (z|ψ)

=

∫
d4z

π2
ψ̄(z) ⋆̄ ψ(z) <∞.

Whenever we care about the radial dependence of the coordinate representation, we must
account for the factor of

√
r̂ in (2.2.20) coming from our weighted inner product. In

such cases, we can normalise ψ with a factor of 1√
4πλ2r̂

before computing the coordinate
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representation, which then reduces to the simple expectation value, ψ(z) = ⟨z|ψ|z⟩ , called
the symbol of ψ. Symbols compose via the (unconjugated) Voros product [5],

⟨z|ψϕ|z⟩ = ⟨z|ψ|z⟩ ⋆ ⟨z|ϕ|z⟩ . (2.2.21)

The derivation for this is very similar to that of (2.2.17). It amounts to observing that

evα∂zα ⟨z|ψ|z⟩ = e
1
2
(v̄αvα+v̄αzα−vαz̄α) ⟨z|ψ|z + v⟩ ,

whereby (2.2.21) follows after inserting the identity (as per (2.2.4)) and shifting the result-
ing integral:

⟨z|ψϕ|z⟩ =
∫
d4w

π2
⟨z|ψ|w⟩ ⟨w|ϕ|z⟩

=

∫
d4v

π2
⟨z|ψ|z + v⟩ ⟨z + v|ϕ|z⟩

=

∫
d4v

π2
⟨z|ψ|z⟩ e−v̄αvαevα

←−
∂zαev̄α

−→
∂ z̄α ⟨z|ϕ|z⟩

= ⟨z|ψ|z⟩ ⋆ ⟨z|ϕ|z⟩ .

Knowing this composition law, we can draw one further parallel with commutative wave
mechanics. In wave mechanics, given a particle with wavefunction ψ(x), the Born rule
determines the probability density function for measuring the particle at a point D to be
P (D) = |ψ(D)|2 = ψ(D) · ψ̄(D). Combining (2.2.20) with (2.2.21) and (2.2.12) gives an
analogous form of the position measurement PDF in our context,

P (D) = ψ(z) ⋆ ψ̄(z),

where, as usual, z ∈ C2 encodes the point D via (2.2.5).

Altogether, the transition from states to their coordinate representations is entirely anal-
ogous to the procedure in commutative quantum mechanics, as described at the start of
section 2.1, only with position eigenstates replaced by the �lifted� coherent states, |z), and
the usual pointwise product of functions replaced with the Voros product (or its conjugate).

We are actually able to formulate a slightly di�erent geometric picture of the quantum
states. At the time of writing, it is not entirely clear to the author how this alternate
formulation relates to that outlined above, or indeed whether the alternate picture is useful
at all. Still, we brie�y outline the alternate construction, and leave it as an open problem
to establish a connection with the material above. We begin with the Peter-Weyl theorem
(theorem D.8 in [22]), which in our context reads

L2(SU(2)) ∼=
⊕
n∈N
Fn ⊗F∗n, (2.2.22)

where L2(SU(2)) is the usual space of square-integrable functions:

L2(SU(2)) :=

{
f : SU(2)→ C

∣∣∣∣∣
∫
SU(2)

dg |f(g)|2 <∞

}
, (2.2.23)

where the integral is with respect to the Haar measure dg on SU(2). For the parameteri-
sation,

g ≡ g(k) = eik·x̂, where k ≡ kk̂ = k

sin θk cosϕksin θk sinϕk
cos θk

 ,
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of (represented) SU(2) group elements (as per appendix A), the integral with respect to
the Haar measure can be explicitly expanded as∫

SU(2)
dg □ ≡

∫
dΩk
4π

∫ π/λ

0

2λdk

π
sin2(λk) □

=
λ

2π2

∫
dΩk

∫ π/λ

0
dk sin2(λk) □,

where □ stands in for a generic integrand, and where we integrate over the usual angle
measure, dΩk = sin θk dθk dϕk. Technically, L

2(SU(2)) is the space of equivalence classes

of such functions under the identi�cation of functions that agree almost everywhere (with
respect to the Haar measure). Much as in (2.1.13), we have B2(Fn) ∼= Fn ⊗ F∗n, which
combines with (2.1.15) and (2.2.22) to give

Hq =
⊕
n∈N

B2(Fn) ∼= L2(SU(2)). (2.2.24)

Note that the Peter-Weyl isomorphism is one at the level of algebras, not just vector spaces.
Speci�cally, we upgrade L2(SU(2)) to an algebra, called the group algebra, by equipping it
with the convolution product [33],

f1 ∗ f2 :=
∫
SU(2)

dh f1(gh
−1)f2(h),

and the algebra on B2(Fn) (likewise on Hq) is de�ned with the product being opera-
tor composition (correspondingly, �contraction on the middle two tensors� if we think of
B2(Fn) instead as Fn ⊗ F∗n). We can write an explicit basis-free form of the algebra
homomorphism

π : L2(SU(2))→ Hq

in terms of our representation of SU(2). Notationally, we will suppress the explicit repre-
sentation, opting to simply consider the group element g ∈ SU(2) to also be an element
of
⊕

n∈N B2(Fn) = Hq (of course, this is well-de�ned because the representation respects
the group multiplication). Then de�ne

π(f) :=

∫
SU(2)

dg f(g)g.

It is straightforward enough to check that this is indeed an algebra homomorphism with
respect to the products de�ned above:

π(f1 ∗ f2) =
∫
SU(2)

dg (f1 ∗ f2)(g)g

=

∫
SU(2)

dg

∫
SU(2)

dh f1(gh
−1)f2(h)g

=

∫
SU(2)

dg

∫
SU(2)

dh f1(g)f2(h)gh

=

∫
SU(2)

dg f1(g)g

∫
SU(2)

dh f2(h)h

= π(f1)π(f2),

where we applied the right-invariance of the Haar measure.
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Finally, it is well-known [22] that, as a manifold, SU(2) is homeomorphic to S3, so the
picture due to the Peter-Weyl theorem gives us an interpretation of quantum states as
�wavefunctions� on S3, which we can think of as being embedded in R4, where instead
of the Voros product (or its conjugate), the algebra is given by the normal convolution
product. It is possible (though currently not certain) that this alternative formulation of
quantum states may be useful in some contexts.

2.2.4 Position measurement as weak measurement

An interpretation of this POVM framework for position measurement in the language of
weak measurement is presented in [32], in the case of the 2D Moyal plane. However, the
situation is very similar in our formalism, so we discuss the connection here brie�y. It is
worth brie�y mentioning here (deferring to the reference for details), mainly because it
preempts the quantum-to-classical transition presented in section 4 (by drawing parallels
with similar suppression of quantum e�ects that emerges in the decoherence program), but
also because it highlights how position measurement is distinguished from other kinds of
measurement within our formalism.

Recall (2.1.15), which decomposed our state space as

Hq =
⊕
n∈N
Fn ⊗F∗n ⊂ Hc ⊗H∗c .

Now the key observation is that the position observables X̂i act via left-multiplication (as
per (2.1.20)), and thereby only act on one sector, Hc, of Hq. For this reason, position
measurements are in fact local measurements, only capable of providing information on
this sector. The other sector, H∗c , acts as an environment (in the sense of decoherence;
see [36], for instance), providing states with additional degrees of freedom that remain
unprobed by position measurements.

That is to say, upon performing a local measurement such as a position measurement,
a state's environmental degrees of freedom can be traced out via a partial trace over
the unobserved subsystem, in this case H∗c , yielding a post-measurement reduced density
matrix. This reduced density matrix is generally a mixed state, usually called an improper

mixed state, since it derives not from the usual statistical ensemble of pure states, but
rather from restriction of a pure state on the full (tensor-product) Hilbert space to a
subsystem.

The above process is precisely the underlying mechanism of decoherence. The interpreta-
tion of our position-measurement formalism within the framework of decoherence is note-
worthy because decoherence is well-understood to generally give rise to suppression of
interference terms and thereby to emergent classical behaviour [36].
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Chapter 3

Free Particle Solutions

Analogous to the commutative case, the free particle time independent Schrödinger equa-
tion (TISE) reads

Ĥ |ψ) = − ℏ2

2m
∆̂ |ψ) = E |ψ) . (3.0.1)

As in the commutative case, we can obtain both plane wave and radial (spherical wave)
solutions. Both forms will be useful in our investigation, so in this chapter we will treat
both forms of solution. In the case of spherical waves, we also revise the commutative form
for comparison.

This chapter can be seen as a continuation of the literature review portion of the thesis,
as the key results can readily be found in existing literature (most notably in [20], with
alternate derivations in [12], and a nice summary of the results in [27]), though we have
added details to the derivations. In particular, our discussion of plane wave normalisation
in section 3.1.2 is absent from existing literature.

3.1 Non-commutative plane waves

A natural candidate for the form of a wave solution is

|p) ≡ |k) := exp

[
i

ℏ
p · x̂

]
= eik·x̂, (3.1.1)

up to appropriate normalisation (of which we defer discussion to subsection 3.1.2), and
where k = p/ℏ is the de Broglie wave-vector. We will con�rm that this form does indeed
solve the free-particle TISE by explicitly computing its energy eigenvalue E in section 3.1.1
below; until then, we simply take for granted that it does.

Since each x̂i represents an su(2) element (and since SU(2) is simply connected [22]), the
plane waves are representations of SU(2) group elements. Moreover, the exponential map
exp: su(2) → SU(2) is surjective, (because SU(2) is connected and compact � see, for
instance, corollary 11.10 in [22]), so that every (represented) SU(2) element assumes the
form of (3.1.1). An important consequence of this is that composing two plane waves
produces another plane wave:

eik1·x̂eik2·x̂ = eik3·x̂.

We can explicitly compute the momentum k3 of this new plane wave using the well-known
Baker�Campbell�Hausdor� (BCH) expansion for log

(
eXeY

)
, which has a simple closed
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form in the case of SU(2). For this, �rst rewrite the plane waves in terms of dimensionless
quantities κi as

eiki·x̂ ≡ eiκi k̂i· x̂λ , where κi := λ∥ki∥, (3.1.2)

for unit vectors k̂i. Then solve for κ3 and k̂3 using

cosκ3 = cosκ1 cosκ2 − k̂1 · k̂2 sinκ1 sinκ2,

k̂3 =
1

sinκ3

(
k̂1 sinκ1 cosκ2 + k̂2 sinκ2 cosκ1 − k̂1 × k̂2 sinκ1 sinκ2

)
.

(3.1.3)

Since the Pauli matrices σi share commutation relations with the operators x̂i/λ, an en-
tirely analogous composition rule holds for (unrepresented) SU(2) group elements written
as exponentials in this way. This closed form of the BCH formula, is �rst attributed to
Rodrigues [34], and can be derived from the spherical law of cosines.

3.1.1 Plane wave energy

We turn our attention to computing the energy eigenvalue associated with the plane waves
of (3.1.1). As a �rst step, we derive the transformation law for the action of a rotation
operator on a plane wave, both because this will simplify the subsequent energy calcu-
lation, and because similar computational techniques appear again later (for instance in
appendix A).

Let R ≡ Rϕ(û) ∈ SO(3) be the rotation matrix encoding a rotation of angle ϕ about axis
û, and let

Π(R) := exp

[
− i
ℏ
ϕû · L̂

]
be its representation on Hq. For convenience in the calculation to follow, write Ĵi ≡ 1

2λ x̂i.

Note, from the coordinate commutation relations, (2.1.5), that [x̂i, Ĵj ] = iϵijkx̂k = [Ĵi, Ĵj ],

implying that x̂ is a vector operator with respect to the Ĵi, from which it immediately
follows by the Baker-Hausdor� lemma (see section 5.1.2 of [1], for instance) that

e−iϕû·Ĵ x̂i e
iϕû·Ĵ = [R−ϕ(û)]ij x̂j =

[
RT x̂

]
i
.

Using the above de�nition, together with (2.1.22), as well as the linearity of the adjoint
representation,

ad: X 7→ (adX : Y 7→ [X,Y ])

in X, we compute

Π(R) |k) = exp
[
ad−iϕû·Ĵ

]
eik·x̂

= Adexp[−iϕû·Ĵ]

(
eik·x̂

)
= e−iϕû·Ĵ eik·x̂ eiϕû·Ĵ

= exp
[
e−iϕû·Ĵ ik · x̂ eiϕû·Ĵ

]
= exp[i(Rk) · x̂]
= |Rk) .

(3.1.4)

Here we have used the fact that eadX = AdeX , which is proposition 3.34 in Hall [22], but
really is just a special case of the general relationship between Lie group and Lie algebra
homomorphisms.
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Chapter 3. Free Particle Solutions 3.1. Non-commutative plane waves

Returning to the computation of the plane wave energy, we make use of the above rotation
law together with the rotational invariance of the Schrödinger equation, (3.0.1), to focus
on the case k = kẑ. In this case,

|kẑ) = eikx̂3 = e
ikλ

(
a†1a1−a

†
2a2

)
. (3.1.5)

We can now derive the corresponding energy directly using the commutation relations,

f(n̂j)aj = ajf(n̂j − 1), and f(n̂j)a
†
j = a†jf(n̂j + 1),

where n̂j := a†jaj for some �xed j and any function f . Speci�cally, in the case where

f(n̂1, n̂2) := eikλ(n̂1−n̂2), we have[
a†α, [aα, f(n̂1, n̂2)]

]
= n̂f(n̂1, n̂2)− a†1a1f(n̂1 − 1, n̂2)− a†2a2f(n̂1, n̂2 − 1)

− a1a†1f(n̂1 + 1, n̂2)− a2a†2f(n̂1, n̂2 + 1) + (n̂+ 2)f(n̂1, n̂2)

= (n̂+ 1)
(
2−

[
eikλ + e−ikλ

])
f(n̂1, n̂2)

=
4r̂

λ
sin2

(
kλ

2

)
f(n̂1, n̂2),

where we have repeatedly used the commutator aja
†
j = n̂j + 1. Thus,

Ĥ |kẑ) = 2ℏ2

mλ2
sin2

(
kλ

2

)
|kẑ) . (3.1.6)

The non-commutativity has clearly a�ected the usual dispersion relation, in particular
introducing an energy upper bound Emax = 2ℏ2

mλ2
. This is consistent with the restriction

k ∈ [0, π/λ) on k required for the states in (3.1.5) to be linearly independent.

3.1.2 Plane wave normalisation

Next, we take some time to motivate our choice of plane wave normalisation. Firstly,
note that, being eigenstates of a Hermitian operator (as per (3.1.6)), plane waves with
di�erent energies are necessarily orthogonal. Equivalently, plane waves |k1) and |k2) with
non-trivial overlap must satisfy

sin2
(
k1λ

2

)
= sin2

(
k2λ

2

)
,

which reduces to the condition

k1 = ±k2 +m
2π

λ
, for some m ∈ Z.

This is at least consistent with the observation, discussed at the end of section 3.1, that
a plane wave with wavenumber outside of the interval [0, π/λ) may be written in terms of
one having wavenumber within this interval. In any case, this suggests that we should not
expect to impose a simple normalisation condition such as (k1|k2) = δ3(k1 − k2), unless,
perhaps, we also impose the restriction that k1, k2 ∈ [0, π/λ). This is the observation which
prompts us to present a more thorough discussion of our chosen normalisation condition.

To aid in selecting an appropriate normalisation condition, let us explicitly compute the
overlap of two plane waves. By (2.1.11), together with (3.1.1), we have

(k1|k2) = 4πλ3|N |2Trc
(
e−ik1·x̂(n̂+ 1) eik2·x̂

)
. (3.1.7)
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3.1. Non-commutative plane waves Chapter 3. Free Particle Solutions

Now the plane waves each commute with n̂ (as each of the coordinates does), and we can
compose the plane waves using (3.1.3) to obtain

(k1|k2) = 4πλ3|N |2
∑
j,m

⟨j,m|eik3·x̂(n̂+ 1)|j,m⟩ , (3.1.8)

for some new wave-vector k3. Here, |j,m⟩ is a simultaneous eigenket of r̂2 and x̂3, as in
(2.1.17). In particular, recall that j = (n1 + n2)/2, so that n̂ |j,m⟩ = 2j |j,m⟩ . From this
we obtain

(k1|k2) = 4πλ3|N |2
∑
j,m

(2j + 1) ⟨j,m|eik3·x̂|j,m⟩ . (3.1.9)

In this expression we recognise the character of the jth SU(2) irrep, usually written

χj(k3) ≡ χj(α, β, γ) :=
∑
m

Dj
mm(α, β, γ),

where Dj
m′,m(α, β, γ) is the Wigner-D matrix element, de�ned

Dj
m′,m(α, β, γ) :=

〈
j,m′

∣∣eiα x̂3
λ eiβ

x̂2
λ eiγ

x̂3
λ

∣∣j,m〉 .
The above de�nitions rely on the decomposition, eik3·x̂ ≡ eiα

x̂3
λ eiβ

x̂2
λ eiγ

x̂3
λ , of our plane

wave into Euler angles (α, β, γ). Importantly, due to the cyclic property of the trace,
group characters are invariant on conjugacy classes. Therefore, the character of a plane
wave depends only on the magnitude of its wave-vector, as we may conjugate with another
plane wave to arbitrarily rotate the wave-vector direction (we have seen this being done in
(3.1.4)) without a�ecting the character. Thus, we will opt to rotate k3 to lie entirely along
the x̂2-axis, whence we can take α = γ = 0 and β = κ3 := λk3. Finally, we can invoke the
completeness relation for characters (equation 3.95 in [39]) to write

(k1|k2) = 4πλ3
∑
j

(2j + 1)χj(κ3)

= 4πλ3
∑
j

χj(0)χj(κ3)

= 4πλ3 δ(κ3),

(3.1.10)

since χj(0) is the dimension of the jth SU(2) irrep, 2j + 1.

Let us consider momentarily whether this result is sensible, by determining the conditions
under which the overlap of (3.1.10) is non-zero. The overlap is clearly non-zero (indeed,

singular) exactly when κ3 = 0, whereupon the composition
(
eik1·x̂

)†
eik2·x̂ of our original

plane waves gives the identity operator, 1c ≡ e0 k̂3· x̂λ , on Hc. Because our representation
of SU(2) is faithful, this happens precisely when the corresponding (unrepresented) SU(2)
group elements compose to the identity matrix,(

eiλk1·σ
)†
eiλk2·σ = I,

and of course elements in SU(2) (as in any group) have unique inverses. Thus, (k1|k2) is
non-zero precisely when

eiλk2·σ =

[(
eiλk1·σ

)†]−1
= eiλk1·σ;
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Chapter 3. Free Particle Solutions 3.2. Spherical waves

that is, when the corresponding unrepresented SU(2) group elements are equal. As men-
tioned earlier, this translates into a slightly non-trivial condition on k1 and k2, since the
exponential map exp: su(2) → SU(2) is not injective [22]. To make this more precise, we
�rst expand both exponentials (using (A.0.2) from appendix A),

cos(λk1)I + i sin(λk1)k̂1 · σ = cos(λk2)I + i sin(λk2)k̂2 · σ,

then note that the matrices {I, σ̂1, σ̂2, σ̂3} forms a basis forM2,2(C), the complex vector
space of 2× 2 complex matrices, whereby we can equate the coe�cients,

cos(λk1) = cos(λk2),

sin(λk1)k̂1 = sin(λk2)k̂2.

It follows that (k1|k2) is non-zero exactly when k1 ± k2 ∈ 2π
λ Z, and either

1. k1 ∈ π
λZ, or

2. k̂1 = ∓k̂2.

If we restrict k1, k2 ∈ [0, π/λ) then these cases collapse into the much simpler single con-
dition that k1 = k2. Therefore, the overlap we obtained is entirely expected.

The conclusion of our discussion is that we may simply choose

N =
1√
4πλ3

, (3.1.11)

with which to normalise our plane waves, so that the normalisation condition reads

(k1|k2) = δ(κ3), (3.1.12)

where cosκ3 is given by (3.1.3). This normalisation condition, while unconventional, is
both convenient and sensible as seen in our discussion. It also gives the state |k) the
correct dimensions, namely length−3/2, as per the discussion of dimensions presented at
the end of section 2.2.2.

3.2 Spherical waves

Spherical waves play an important role in the pinhole interference setup which we study
in section 4. As such, before we treat the non-commutative free particle spherical wave
solutions, it bears revising the standard commutative spherical waves for comparison. In
both the commutative and non-commutative cases, we will primarily be interested in the
large-radius asymptotic behaviour (speci�cally of the radial part), as this is the relevant
regime for the main calculation in chapter 4.

3.2.1 Commutative spherical waves

The spherical wave free-particle solutions of commutative quantum mechanics are derived
in many standard introductory texts; see for instance sections 3.3 and 3.4 of Abers [1].
They have the general form

ψklm(r, θ, ϕ) = Rkl(r)Y
m
l (θ, ϕ),
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3.2. Spherical waves Chapter 3. Free Particle Solutions

labelled by momentum, k, and the angular momentum quantum numbers l ∈ N and
m ∈ [−l, l]∩N. The normalisation condition on the full wavefunction implies separate nor-
malisation conditions on the angular and radial components thereof, expressed respectively
as ∫

|Y m
l (θ, ϕ)|2 dΩ = 1, and

∫ ∞
0
|Rkl(r)|2 r2dr = 1. (3.2.1)

Inserting a solution of the above form causes the free particle Schrödinger equation to split
into separate angular- and radial equations. The former admits the standard spherical
harmonic solutions, which we omit. The latter admits solutions of the form

Rkl(r) = AgJ,l(kr) +BgY,l(kr),

where gJ,l and gY,l denote respectively the order-l spherical Bessel- and Neumann functions,
and where the coe�cients A and B are determined by the boundary conditions. The
Neumann functions are only valid solutions away from the origin, but this regime is relevant
for our later interference calculations. Indeed, we will use the large-r form of the radial
solutions (see equation 3.132 of [1], for instance),

Rkl(r) = N
1

r
e±ikr, (3.2.2)

for some normalisation constantN . This asymptotic behaviour may be derived as the large-
r limiting behaviour of the spherical Hankel functions of the �rst kind, gH,l = gJ,l+igY,l, the
calculation for which is treated in section A.2.3 of [1]. This approach informs how we derive
the asymptotic behaviour of the analogous non-commutative spherical wave solutions in
section 3.2.2 below.

Concerning the normalisation of the asymptotic solutions in (3.2.2), there are two impor-
tant observations to be made. Firstly, it is clear from (3.2.1) that the radial part of any
wavefunction has dimensions of length−3/2; therefore, N must be dimensionful, with di-
mensions of length−1/2. Secondly, the integral as given in (3.2.1) diverges if we insert the
asymptotic form of Rk,l,∫ ∞

0

∣∣∣∣N 1

r
e±ikr

∣∣∣∣2 r2dr = |N |2 ∫ ∞
0

dr ̸<∞.

We can address both of these observations by regularising the divergent integral � we
imagine bounding our entire system within some large �nite volume V , say a sphere, and
take the radial integral only to the boundary of the sphere, ∼ V 1/3. Then N is proportional
to V −1/6, which introduces the missing dimensionality. We will not bother to calculate
the exact dimensionless proportionality constant, as it is neither very meaningful ((3.2.2)
is merely an approximation for large r) nor necessary for the ensuing discussion.

3.2.2 Non-commutative spherical waves

Returning to our non-commutative formalism, the free particle angular momentum eigen-
states are shown in [20] to have the form

|k, l,m) :=
∑

(mi,ni)∈Λ

(a†1)
m1(a†2)

m2

m1!m2!
g(n̂, k)

(a1)
n1(−a2)n2

n1!n2!
. (3.2.3)

Here, the values l ∈ N and m ∈ Z ∩ [−l, l] are �xed, and our summation runs over the set

Λ :=
{
(m1,m2, n1, n2) ∈ N4

∣∣ m1 +m2 = n1 + n2 = l, m1 −m2 − n1 + n2 = 2m
}
.

(3.2.4)
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Inserting this form into (3.0.1) yields a di�erence equation for g which admits two linearly
independent solutions (derived in section 7 of [12]) which have the forms

gJ,l(n, k) =

[ √
π sinl+1 κ

2l+1 Γ
(
3
2 + l

)] cosn κ 2F1

(
1− n
2

,−n
2
,
3

2
+ l,− tan2 κ

)
, (3.2.5)

for n ≥ 0, and

gY,l(n, k) =

[
−
√
π(−2)l cosl+1 κ

tanl κΓ
(
1
2 − l

) ] n! cosn κ

Γ(2 + 2l + n)

× 2F1

(
−1− l − n

2
,−l − n

2
,
1

2
− l,− tan2 κ

)
,

(3.2.6)

for n > 0, respectively. Here the functions 2F1 are the (Gauss) hypergeometric functions,
and κ := λk is a dimensionless quantity. These solutions are the non-commutative ana-
logues of the spherical Bessel- and Neumann functions, respectively. Like its commutative
counterpart, the latter solution, gY,l, is only valid away from the origin, captured by the
restriction n > 0. When away from the origin, another valid solution is the linear combi-
nation

gH,l := gJ,l + igY,l,

which is the non-commutative analogue for the Hankel functions of the �rst kind.

We are again interested in the asymptotic behaviour of the spherical waves. Following
the approach in section D of [27], we �rst consider the asymptotic behaviour of the radial
function, g. This involves expressing gY,l(n, k) and gJ,l(n, k) in terms of Jacobi polynomials,
using identities 15.3.21 and 15.4.6 from [2], then expanding these polynomials for large n
(corresponding to large radius) using theorem 8.21.8 from [45]. The result, as given in [27],
is that for large n,

gJ,l(n, k) ≈
sin((n− l − 1)κ− lπ/2)

nl+1
, and gY,l(n, k) ≈ −

cos((n− l − 1)κ− lπ/2)
nl+1

,

whence the linear combination gH,l behaves asymptotically like an outgoing radial wave:

gH,l(n, k) ≈
ei(n+l+1)κ

(in)l+1
. (3.2.7)

Compared to its commutative analogue, there is an additional factor of n−l in this expres-
sion. However, this is compensated by the remaining radial dependence in (the other factors
of) the spherical wave. To see this, consider the (asymptotic) symbol (see section 2.2.3),

⟨z|k, l,m|z⟩ =
∑

(mi,ni)∈Λ

z̄m1
1 z̄m2

2 zn1
1 (−z2)n2

m1!m2!n1!n2!
⟨z|gH,l(n̂, k)|z⟩

≈ Rl ⟨z|e
i(n̂+l+1)κ

(in̂)l+1
|z⟩ eimϕ

×
∑

(mi,ni)∈Λ

(−1)n2

m1!m2!n1!n2!
cosm1+n1

(
θ

2

)
sinm2+n2

(
θ

2

)
,

of the state |k, l,m). In the �rst line, we have just acted the creation and annihilation
operators of (3.2.3) to the left and right respectively on the coherent states (which are
their respective eigenstates), and in the second line we have substituted the representation
of (2.2.5) (recall R := r/λ). The radial dependence of this symbol is shared between the
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3.2. Spherical waves Chapter 3. Free Particle Solutions

�rst two factors, so we should compute the remaining matrix element. This calculation
ends up being somewhat technical, so we delegate the details to appendix B.3.1There it is
shown that, to leading order in the large-R expansion,

⟨z|e
i(n̂+l+1)κ

(in̂)l+1
|z⟩ ∼ 1

(iR)l+1
eR(cosκ−1)+iR sinκ, (3.2.8)

cancelling the factor of Rl from the angular part of the spherical wave symbol, and leaving
an overall radial dependence of 1/R.

1Appendix B actually treats the more general problem of computing the matrix element of any function,
g(n̂), of the boson number operator, n̂, with respect to a pair of (generally-distinct) coherent states. The
particular matrix element needed here is thus merely one special case which the more general machinery
of appendix B is able to handle.
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Chapter 4

Pinhole Interference

Consider the con�guration for three-dimensional pinhole interference shown in �gure 4.1.
Plane waves incident on a barrier (which is oriented normal to the direction of plane
wave propagation) pass through a pair of pinholes, resulting in spherical wave fronts that
interfere before being detected at the screen. We choose coordinates so that the barrier
lies in the plane x = 0 and has pinhole apertures at z = ±d.

2d

L

Figure 4.1: Pinhole interference con�guration

For our calculations, we will �x a detection point D = (L, yD, zD) on the screen, separated
from each of the respective pinholes by distances

r± := dist (±dẑ,D) ≡
√
L2 + y2D + (zD ∓ d)2. (4.0.1)

Due to symmetry, the spherical waves in our setup will have equal energies, and thus
equal wavenumber magnitudes, k. This is the case regardless of whether we take the
standard non-relativistic dispersion relation of commutative quantum mechanics, or that
of (3.1.6), the latter together with the restriction k ∈ [0, π/λ). Of course, true spherical
waves emanate radially outward in all directions. Nevertheless, it will still bene�t us
to de�ne some directional wavenumber vectors, k±. The reason for this is that we will
perform calculations within the large-separation approximation (also known as the far-

�eld approximation), wherein L is assumed to far exceed both the slit separation, 2d, and
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4.1. Commutative calculation Chapter 4. Pinhole Interference

the displacements, zD and yD, of the measurement point. Under this approximation, we
will treat the spherical waves incident on the screen instead as (appropriately scaled) plane
waves with momenta normal to their wavefronts. The appropriate wavenumber vectors are
then

k± ≡ k k̂± =
k

r±

 L
yD

zD ∓ d

 , (4.0.2)

directed from each pinhole towards D. We will see this approximation in e�ect in the
coming sections, both for the commutative and non-commutative calculations.

Note also that, since the origin is co-linear with the pinholes, k̂± and D̂ are all co-planar.
This permits us to illustrate the geometry of the setup within an appropriate planar slice;
such is given by �gure 4.2, whose angles we will reference in the coming calculations.

D

k̂+

k̂−

D̂

d

d

α

β

Figure 4.2: Planar slice of pinhole con�guration along plane de�ned by pinholes and de-
tection point

The main result of this chapter is derived in section 4.2, where we treat this pinhole
con�guration in the fuzzy-sphere NCQM formalism. However, in section 4.1 below, we
�rst treat the setup using ordinary commutative quantum mechanics. This is useful for
comparison with the non-commutative result � indeed, the commutative result should be
viewed as a special case of the non-commutative one, and must be entirely recovered within
the commutative limit, λ→ 0. We check this limit in section 4.4.1.

4.1 Commutative interference calculation

In our pinhole interference setup, the wavefunction incident on the screen is a superposition
of spherical waves emanating from each pinhole. We invoke the large-separation assumption
(in particular, that L≫ 2d) to use the large-r form of each spherical wave, as per (3.2.2).
Then the wavefunction has the form

ψ(D) =
1√

8π V 1/6

(
1

r+
eikr+ +

1

r−
eikr−

)
,

where V is the system's volume, as per the discussion at the end of section 3.2.1. We
have chosen the simplest possible angular dependence for our spherical waves, namely the
spherical harmonic Y 0

0 (θ, ϕ) = 1/
√
4π. A more complicated angular dependence would only
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Chapter 4. Pinhole Interference 4.1. Commutative calculation

serve to apply an additional modulation to the base interference pattern � we therefore
simplify the problem by ignoring angular momentum.

Crucially, the large-separation assumption further permits us to approximate the spherical
waves with (appropriately-attenuated) plane waves,

ψ(D) =
1√

8π V 1/6

(
1

r+
eik+·D +

1

r−
eik−·D

)
, (4.1.1)

which is the so-called paraxial approximation. We should justify this step a bit more
carefully by showing that the plane waves capture the correct radial dependence within our
large-separation approximation. To this end, consider the triangle depicted on �gure 4.2

with vertices 0, D and dẑ; its area can be expressed either as 1
2d
√
L2 + y2D or as 1

2r+r sinα

(identity 4.3.148 in [2]), whence

sinα =
2 · 12d

√
L2 + y2D

rr+
=
d

L

√
1 +

(yD
L

)2√
1 +

(yD
L

)2
+
(
zD
L

)2√
1 +

(yD
L

)2
+
(
zD
L −

d
L

)2 ≈ d

L
,

up to �rst order (in all of d/L, yD/L, zD/L ≪ 1). Next, applying the cosine rule, d2 =
r2+ + r2 − 2rr+ cosα, to the same triangle and solving for r+ gives

r+ = r cosα± r

√(
d

r

)2

− sin2 α ≈ r cosα, (4.1.2)

since d/r ≈ d/L also, so the square root vanishes to leading order. By identical reasoning,
we also have r− ≈ r cosβ, and so k+ ·D = ∥k+∥∥D∥ cosα = rk cosα ≈ kr+, and similarly
k− ·D ≈ kr−. This justi�es the paraxial approximation of (4.1.1). We should also note
that only the leading-order contributions in the far-�eld approximation contribute to the
interference pattern itself � higher-order terms serve only as modulation e�ects. This
justi�es why we only compute up to leading order in each of d/L, yD/L, and zD/L, both
in this section and in section 4.2 below.

With the above form of the wavefunction, the spatial probability density, Pcomm(D), is
(up to dimensionless normalisation prefactors)

Pcomm(D) = |ψ(D)|2 = 1

8πV 1/3

[
1

r2+
+

1

r2−
+

1

r+r−

(
ei(k+−k−)·D + e−i(k+−k−)·D

)]
=

1

4πV 1/3 r+r−

[
2d2

r+r−
+ cos(α+ β) + cos(rk(cosα− cosβ))

]
,

(4.1.3)

where we have (again) applied the cosine rule to the geometry of �gure 4.2 to write

r2+ + r2−
2r+r−

=
4d2 + 2r+r− cos(α+ β)

2r+r−

=
2d2

r+r−
+ cos(α+ β).

Qualitatively, the form of the resulting distribution is easily understood. It consists essen-
tially of two parts: an underlying bimodal distribution superimposed with interference,

Pcomm(D) ∝ 2d2

r2+r
2
−
+

1

r+r−
cos(α+ β)︸ ︷︷ ︸

bimodal shaping
function

+
1

r+r−
cos(rk(cosα− cosβ))︸ ︷︷ ︸
interference term

. (4.1.4)
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This is perhaps most easily seen by independently plotting each part. For the sake of
illustration, we �x yD = 0 and write the bimodal terms collectively as a function, P0(zD),
of zD. Likewise, write the interference term as P1(zD). Figure 4.3 then plots each of these
functions for a range of zD values (for arbitrarily-chosen �xed L, d and k), highlighting
the behaviour we describe. The smooth bimodal distribution P0 represents the behaviour

Figure 4.3: Plots of each of the �parts� of Pcomm, as per (4.1.4), for L = 60, d = 70, k = 0.4.
All lengths are in arbitrary units, and plots are unnormalised.

of a classical particle passing through the double-pinhole setup, while the interference,
P1, captures all of the quantum behaviour. In the next section, we will repeat the in-
terference calculation in the NCQM formalism, and in section 4.3 we will qualitatively
examine the form of the distribution resulting from the NCQM context. To foreshadow
the outcome, we will obtain a form very much like the above, only with an additional ex-
ponential suppression sitting in front of the interference term. Moreover, the result of the
non-commutative calculation must of course reduce to (4.1.4) in the limit λ→ 0 (we check
this in section 4.4.1), so we already appreciate that the suppression will scale in intensity
with increasing λ.

4.2 Non-commutative interference calculation

Much as in the commutative calculation, we want the state |ψ) arriving at D to have
the form of a superposition of spherical waves emanating from each pinhole. It is not
immediately obvious how we would modify the form of the non-commutative spherical
waves from section 3.2.2 to handle a di�erent source location. That said, for the sake of
determining the interference pattern it only matters that the two spherical waves traverse
di�erent path lengths (that is r+ and r−) between their respective sources and D. With
this in mind, it is straightforward to write down the symbol of the state |ψ) arriving at D,

⟨z|ψ|z⟩ =M
[ 〈

z+
∣∣k, 0, 0∣∣z+

〉
+
〈
z−
∣∣k, 0, 0∣∣z−〉] .

In the above, all of the vectors z, z± ∈ C2 encode the coordinates of D, as per (2.2.5), only
z measures these coordinates relative to the origin, while each of the z± measures them
relative to the respective pinhole. The constant, M , is an overall normalisation, which
we discuss shortly. We have clearly again chosen l = m = 0 for simplicity (for the same
reasons as in the commutative calculation), and we will again focus on the large-separation
asymptotic behaviour,

⟨z|ψ|z⟩ ∼ M

i

[
1

R+
eR+(cosκ−1)+iR+ sinκ +

1

R−
eR−(cosκ−1)+iR− sinκ

]
, (4.2.1)

as per (3.2.8). We refer here to dimensionless constants R± := r±
λ = z̄±α z

±
α , as well as

κ := λk, the latter de�ned as in section 3.2.2.
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We want to approximate the spherical waves with (scaled) plane waves in analogy with the
paraxial approximation of (4.1.1). To this end, we should start by considering the symbol,
⟨z|eik±·x̂|z⟩, of a plane wave (measured with respect to the origin). The idea is that by
comparison of this symbol with (4.2.1), we will identify the appropriate scaling for the
plane waves in our context. There is a simple transformation law for the action of a plane
wave on a coherent state, the derivation of which we defer to appendix A. To be precise,
a plane wave acting on a coherent state simply produces a di�erent coherent state, which
is captured by (A.0.6). As such, we can write our plane wave symbol as

⟨z|eik±·x̂|z⟩ = ⟨z|g(k±)z⟩

=exp

[
−1

2

(
∥z∥2 + ∥g(k±)z∥2

)
+ z†g(k±)z

]
=exp

[
−1

2

(
∥z∥2 + ∥g(k±)z∥2

)
+ z†(cosκ+ i sinκ k̂± · σ)z

]
,

(4.2.2)

where g(k) ∈ SU(2) is de�ned as in (A.0.6), and we have invoked the coherent state overlap,
(2.2.3), as well as (A.0.2) to expand the form of g(k±). Of course, being an SU(2)-element,
g(k±) is an isometry, so ∥g(k±)z∥2 = ∥z∥2 = R, as per (2.2.5). Moreover (by (2.2.5) and
the immediately proceeding discussion),

z†(k̂± · σ)z =
(
z†σiz

)
[k̂3]i = k̂± ·D/λ,

and k̂± ·D ≈ r±, as derived in section 4.1 above, so

⟨z|eik±·x̂|z⟩ ≈ eR(cosκ−1)+iR± sinκ. (4.2.3)

This closely resembles one of the terms in (4.2.1), and by inspection we can see that the
following state will have the desired symbol,

|ψ) = M

i
[η+ |k+) + η− |k−)] , (4.2.4)

for real dimensionless constants

η± :=
1

R±
exp[(R± −R)(cosκ− 1)].

While (4.2.4) and (4.1.1) appear super�cially to di�er in form, we should note that η± ≈
1/R± for large L (or small κ). This is easily seen from the geometry of �gure 4.2 using
similar arguments to those of section 4.1. Under this approximation, there is little di�erence
in the form of the state at the screen between the commutative and non-commutative cases.

Lastly, we should discuss the normalisation. The plane waves |k±) each come with nor-
malisation factors N = 1√

4πλ3
, as per (3.1.11). As in the commutative calculation, we

are not much concerned with overall dimensionless normalisation factors. That said, we

should include a factor of
√

λ
V 1/3 for comparison with the commutative result, given that

these values de�ne the length scales of the problem. For this reason we choose the simplest

sensible overall normalisation, M := i
√

λ
2V 1/3 , for the sum.

Now the probability of observing our state at D is calculated using (2.2.12) as

P (D) = 4πλ2 ⟨z|ψr̂ψ†|z⟩

= 4πλ2
λ

2V 1/3

1

4πλ3
⟨z|
(
η+e

ik+·x̂ + η−e
ik−·x̂

)
r̂
(
η+e

−ik+·x̂ + η−e
−ik−·x̂

)
|z⟩

=
λ

V 1/3

[
η2+ + η2−

2
⟨z|n̂+ 1|z⟩+ η+η−Re ⟨z|eik+·x̂(n̂+ 1)e−ik−·x̂|z⟩

]
,

(4.2.5)
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where we have used the fact that each plane wave commutes with r̂ (since each x̂i does).
We are left with the task of computing a pair of matrix elements involving the number
operator n̂. There is a completely general approach to computing the matrix element
of some function, g(n̂), of the number operator, n̂, with respect to a pair of (generally
distinct) coherent states. This method is outlined in appendix B, where section B.2 treats
the special case of a polynomial function g as we have here. As such, the �rst remaining
matrix element, ⟨z|r̂|z⟩, is readily computed using (B.2.1), whereby

⟨z|n̂+ 1|z⟩ = R+ 1.

Let us then turn our attention to the remaining matrix element, namely

E := ⟨z|eik+·x̂(n̂+ 1)e−ik−·x̂|z⟩ .

The �rst step is to act each of the plane waves on the adjacent coherent state. As mentioned
above, it is shown in appendix A that this simply yields a pair of new coherent states. That
is,

E = ⟨g(−k+)z|n̂+ 1|g(−k−)z⟩ ,
according to (A.0.6). We are now once more in a position to invoke (B.2.1), whereby

E = exp

[
−1

2

(
∥g(−k+)z∥2 + ∥g(−k−)z∥2

)
+K

]
(K + 1)

= eK−R(K + 1),

where, as above, we have noted that ∥g(−k±)z∥2 = ∥z∥2 = R. Here, the complex constant

K := (g(−k+)z)
† (g(−k−)z)

is de�ned in accordance with its appearance in appendix B.2.

It now only remains to compute the constant K explicitly. Expanding its de�nition,

K = z†g(k+)g(−k−)z
= z†eiλk+·σe−iλk−·σz.

(4.2.6)

Now express the product eiλk+·σe−iλk−·σ of SU(2) group elements as a single group element,

eiκ3k̂3·σ, of the same form. This is always possible, as explained in section 3.1, because

SU(2) is compact and connected. Next, expand this composite exponential as eiκ3k̂3·σ =
cosκ3+ i k̂3 ·σ sinκ3, as per appendix A, leaving k3 and κ3 undetermined for the moment.
Substituting this form into (4.2.6) gives

K = z†z cosκ3 + i sinκ3

(
z†σiz

)
[k̂3]i

= R
(
cosκ3 + i D̂ · k̂3 sinκ3

)
,

(4.2.7)

simplifying as we did for (4.2.2). Finally, the BCH formula � rather, the special case
thereof for SU(2), (3.1.3) � gives explicit forms for cosκ3 and k̂3 sinκ3, into which we
substitute

κ1 = κ2 ≡ κ = λk,

k̂1 ≡ k̂+ =
1√

L2 + y2D + (zD − d)2

 L
yD

zD − d

 ,
k̂2 ≡ −k̂− =

−1√
L2 + y2D + (zD + d)2

 L
yD

zD + d

 .
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Upon substituting the above, one of the terms resulting from (3.1.3) contains the triple
product D̂ · (k̂+× k̂−), but this is easily seen to vanish, since the three vectors in question
are all co-planar, as depicted in �gure 4.2. We are left with

K = R cos2 κ+R sin2 κ cos(α+ β) + iR sinκ cosκ(cosα− cosβ), (4.2.8)

where we have written each scalar product appearing in (3.1.3) in terms of the angles α
and β from �gure 4.2. For brevity, let us introduce two more constants,

A := ReK = R
(
cos2 κ+ cos(α+ β) sin2 κ

)
,

B := ImK = R sinκ cosκ(cosα− cosβ),
(4.2.9)

in terms of which

ReE = eA−RRe[(cosB + i sinB)((A+ 1) + iB)]

= eA−R((A+ 1) cosB −B sinB)

Finally, inserting everything into (4.2.5), we obtain the �nal form of our probability dis-
tribution,

P (D) =
λ

V 1/3

[
η2+ + η2−

2
(R+ 1) + η+η−e

A−R((A+ 1) cosB −B sinB)

]
. (4.2.10)

For the remainder of this chapter we discuss our main result, (4.2.10), and consider various
limiting cases. In particular, we con�rm that in the commutative limit, λ → 0, (4.2.10)
reduces to the commutative result, (4.1.3). Following that, we consider the classical limit,
deriving the speci�c conditions under which we observe a quantum-to-classical transition,
and �nally we derive how (4.2.10) is a�ected by allowing and entire collection of N particles
to pass through the pinhole setup at once.

4.3 Qualitative discussion of interference pattern

We start our discussion with a few cursory remarks about the key qualitative features
of our non-commutative distribution, (4.2.10), in a similar vein to the discussion closing
section 4.1. The form of (4.2.10) is undeniably still somewhat complicated, especially
when all of the sub-expressions are fully substituted. Much of this complexity will vanish
in the limiting cases we consider in upcoming sections. Nevertheless, as foreshadowed
in section 4.1, we can already at this stage divide (4.2.10) according to the qualitative
functions of the various sub-expressions, much like in (4.1.4),

P (D) ∝
η2+ + η2−

2
(R+ 1)︸ ︷︷ ︸

bimodal shaping
function

+ η+η−e
A−R︸ ︷︷ ︸

exponential
suppression

× ((A+ 1) cosB −B sinB)︸ ︷︷ ︸
interference terms

. (4.3.1)

We could once again plot each component separately, as we did for (4.1.4), in order to
con�rm their respective functions, though we avoid doing as much due to the similarity
with the commutative case. Instead, we focus for now on the key di�erence, namely the
exponential factor. Notably, this exponential can easily be seen to indeed always act to
suppress the interference, given that the exponent is manifestly always nonpostive,

A−R = R sin2 κ (cos(α+ β)− 1) ≤ 0,
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4.3. Qualitative discussion Chapter 4. Pinhole Interference

since κ ∈ [0, π), and α+ β ∈ (0, π).

For understanding the overall qualitative behaviour of the entirety of (4.2.10), it is still
helpful to examine a plot. Figure 4.4 shows surface plots of (4.2.10) for some arbitrarily-
chosen parameter values, along with the yD = 0 traces. Actually, instead of P (D), we plot

1
4πλ2r

P (D), which is the spatial probability density corresponding to P (D), as explained in
section 2.2. This helps us later to meaningfully compare these plots qualitatively with those
of the commutative limit. The plots in �gure 4.4 indeed clearly exhibit the expected bi-
modal distribution superimposed with interference. Moreover, the interference is evidently
stronger for one set of parameters than for the other, and the increase in suppression at
the higher of the two momenta is correlated with increased localisation of the distribution
� that is, as the interference gets suppressed, we see the distribution separating into two
distinct localised peaks. All of these behaviours are entirely characteristic, as we shall see
in the upcoming sections.

(a) k = 0.22 (b) k = 0.44

Figure 4.4: Surface plots of 1
4πλ2r

P (D), with yD = 0 traces, for di�erent values of k. Other
parameters are L = d = 70, λ = 0.1. All lengths are in arbitrary units.

More importantly, the plots also suggest that the distribution is re�ection-symmetric. In-
deed, we can easily algebraically verify its symmetry under zD ←→ −zD � each of the
following quantities are manifestly invariant under this replacement: R; cos(α+ β), and
hence eA−R; cosB and B sinB (as B accrues a minus sign under the re�ection); and �nally
η+η− and η2±. This would hardly be remarkable, were it not for the fact that the double-
slit interference pattern in the 2D Moyal plane is asymmetric under re�ection [32]. The
restoration of re�ection symmetry in our analogous setup in 3D fuzzy space con�rms the
expectations of [32] that the re�ection-asymmetry in the Moyal plane interference pattern
arises only because the Heisenberg-Moyal commutation relations break rotational symme-
try (as explained in section 2.1). The distribution is likewise (unsurprisingly) symmetric
under the re�ection yD ←→ −yD, and thus also under 180◦ rotation about the x-axis (the
composition of these two re�ections).
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4.4 Limiting cases

In this section we consider how the probability distribution of (4.2.10) simpli�es in various
limiting cases. Speci�cally, we �rst check that in the commutative limit, λ→ 0, it coincides
with (4.1.3), the interference pattern from commutative quantum mechanics. Following
that, we consider the classical limit of the interference pattern, and derive the conditions
under which we can expect to observe a quantum-to-classical transition.

4.4.1 Commutative limit

Let us �nally take the commutative limit λ→ 0+, and show that (4.2.10) indeed reproduces
(4.1.3), as it must. There is actually a small subtlety which we have already foreshadowed
at the end of section 2.2.2. That is, since Pcomm(D) represents a spatial density (with
dimensions of length−3), and P (D) does not (being dimensionless), we should instead
expect to obtain Pcomm(D) as the limit

lim
λ→0+

1

4πrλ2
P (D),

rather than simply limλ→0+ P (D). This is because, as shown in section 2.2.2, 1
4πrλ2

P (D)
is precisely the spatial density corresponding to P (D).

Now, as we send λ → 0+, B clearly obtains a �nite (generally non-zero) limit, which we
call B0,

lim
λ→0+

B = lim
λ→0+

r

λ

(
kλ+O(λ3)

)
(cosα− cosβ)

= rk(cosα− cosβ)

≡ B0,

whereas A diverges like R ≡ r/λ,

lim
λ→0+

A = lim
λ→0+

r

λ

(
1 + (cos(α+ β)− 1)k2λ2 +O(λ3)

)
= lim

λ→0+

r

λ
̸<∞.

But the divergence of A is cancelled in the expression A−R, which altogether vanishes,

lim
λ→0+

A−R = lim
λ→0+

r

λ

(
1 + (cos(α+ β)− 1)k2λ2 +O(λ4)

)
− r

λ

= 0,

meaning the interference suppression vanishes in this limit, eA−R → 1. Finally, the numer-
ator, R±η±, of η± tends to 1,

lim
λ→0+

R±η± = exp

[
lim
λ→0+

r± − r
λ

(
1 + k2λ2 +O(λ4)− 1

)]
= e0 = 1,

so that η± → λ/r±.
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Using the above limits (invoking continuity wherever applicable) together with the form
of (4.2.10), we compute the commutative limit,

lim
λ→0+

1

4πrλ2
P (D)

= lim
λ→0+

1

4πλV 1/3 r

[
η2+ + η2−

2
(R+ 1) + η+η−e

A−R((A+ 1) cosB −B sinB)

]
= lim

λ→0+

1

4πV 1/3
�r

[
1

2

(
1

r2+
+

1

r2−

)
����(r + λ) +

1

r+r−
����(r + λ) cosB0

]
=

1

4πV 1/3 r+r−

[
r2+ + r2−
2r+r−

+ cos(rk(cosα− cosβ))

]
= Pcomm(D).

Reassuringly, this is exactly the required result.

Having established that we have the correct commutative limit, we pause to compare its
behaviour qualitatively with that of P (D). To this end, we plot Pcomm(D) in �gure 4.5 for
the same parameter values (except for λ, of course) as in �gure 4.4. Comparing �gures 4.5

(a) k = 0.22 (b) k = 0.44

Figure 4.5: Surface plots of Pcomm(D), with yD = 0 traces, for the same values of k, L,
and d as in �gure 4.4.

and 4.4, the low-momentum (k = 0.22) distributions are unsurprisingly similar, but where
in the non-commutative distribution of �gure 4.4 we observe a suppression of interference
for higher momentum (k = 0.44), the commutative distribution of �gure 4.5 actually
exhibits completely the opposite behaviour, showing more pronounced interference at this
higher k. This shows that the momentum-dependent quantum-to-classical transition that
we observe is a uniquely non-commutative phenomenon. In the next section, we will
consider this transition more carefully.
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4.4.2 Classical limit and quantum-to-classical transition

We recognise the �classical-regime� of our distribution to consist of any parameter combina-
tions that result in strong interference suppression, leaving behind the underlying bimodal
distribution that one would expect to emerge classically from our pinhole setup. An ex-
ample of a distribution in this regime is shown in �gure 4.6. Looking at �gure 4.4, or even

Figure 4.6: Surface plot of 1
4πλ2r

P (D) with k = 1 (and L, d and λ as in �gure 4.4), exhibit-
ing classical-regime behaviour of being bimodal and localised with no visible interference.

the double slit interference in the Moyal plane [32], we might expect this regime to emerge
in a large momentum limit. However, recall that, like the plane wave energy of (3.1.6),
the probability distribution of (4.2.10) is periodic in k with period 2π/λ; such periodicity
does not occur in the Moyal plane [32]. The upshot is that we cannot hope to obtain a
well-de�ned limit by sending k → ∞, so it is not apparent what a large momentum limit
should entail. Indeed, we will show that suppression can occur even for arbitrarily small
momenta.

Recall from (4.3.1) that the factor responsible for interference suppression is

eA−R = exp
[
R sin2 κ(cos(α+ β)− 1)

]
.

We should therefore consider the conditions under which the exponent is signi�cant.
Firstly, we should explicitly write cos(α+ β) in terms of the length scales in the prob-
lem. Applying the cosine rule to �gure 4.2, we have

cos(α+ β) =
r2+ + r2− − 4d2

2r+r−

=
r2 − d2√

(r2 + d2)2 − 4z2Dd
2

=
1−

(
d
r

)2√(
1 +

(
d
r

)2)2 − 4
(
zD
r

)2 (d
r

)2
≈

1−
(
d
r

)2
1 +

(
d
r

)2
≈ 1− 2d2

r2
,

to �rst order in each of d/r ≪ 1 and zD/r ≪ 1, given our large-separation approximation.
Suppose for the moment that λk ≪ 1, as would be the case at low momentum. Expanding
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the exponent,

A−R = λrk2(cos(α+ β)− 1) +O(λ3k3)

≈ −2λk2d2

r

to leading order, we identify the condition for strong suppression as 2λk2d2/r ≫ 1. It is
helpful to rewrite this condition in terms of energy, and given our assumption on λk, we
can expand (3.1.6) as E ≈ ℏ2k2

2m . The condition for interference suppression then becomes

4λd2mE

rℏ2
≫ 1 ⇐⇒ r ≪ 4λd2mE

ℏ2
, (4.4.1)

so that, in particular, the suppression e�ect is only visible at su�ciently small distances.
This seems in opposition with our large-separation assumption. If we combine this as-
sumption with the above inequality, we �nd that the particular expression of (4.4.1) is
only valid in the regime

1≪ r

d
≪ 4λdmE

ℏ2
. (4.4.2)

Generally, the physical implications of condition (4.4.1) are entirely as expected � the
strength of the suppression scales with larger values of mass, energy, and non-commutative
parameter. None of these relationships come as a surprise, in light of the Moyal plane re-
sult [32]. We also note that in the commutative limit λ = 0, the upper limit on the distance
of observation vanishes and interference is prevalent at all length scales of observation.

That said, there are two remarkable features of (4.4.1) that distinguish it from the anal-
ogous classicality condition for double-slit interference in the Moyal plane. Firstly, our
suppression strength is a�ected by the distance r at which measurement is performed,
whereas in the Moyal plane, it depends (for a single particle) only on the momentum and
non-commutative parameter. Secondly (indeed, consequently), condition (4.4.1) can (in
theory) be satis�ed even for small values of k (indeed, we started by assuming k ≪ 2/λ)
simply by choosing r su�ciently small, meaning that, in this setting, we are theoretically
capable of observing suppression at low momentum, unlike in the Moyal plane. These are
important testable predictions of our three-dimensional theory.

At this point, we can perform a similar back-of-the-envelope estimate to that in [32] to get
a sense of when we should expect to see suppression in practice. Supposing λ to be on the
order of a Planck length, and the slit separation d on the order of 1cm, and considering
the interference pattern of a single electron with an energy of 1eV, we expect to observe
signi�cant suppression when

r ≲
(10−35m)(10−2m)2(10−31 kg)(10−19 kgm2 s−2)

(10−34 kgm2 s−1)2

= 10−21m.

We should of course note that values which we have substituted above fall well within the
bounds set by the two constraints, namely λk ≪ 1 and (4.4.2), under which (4.4.1) is valid.
The resulting required value of r is obviously extremely small, so we should ultimately not
expect to be able to detect any suppression at these energies. Even if we could probe such
length scales (or alternatively if we tried to �x things by signi�cantly increasing d), the
constraint on r certainly is not consistent with the large-separation approximation under
which (4.4.1) is valid in the �rst place. Conversely, to observe suppression at lengths on
the order of a meter requires an electron to have energies around 1019 eV � again, quite
undetectable. Thankfully this is not concerning, since in the next section we will show
how, once multiple particles are allowed to interfere, the suppression becomes much more
pronounced at realistic length scales.
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4.5 Macroscopic behaviour

The goal for this section is to derive how the main result of this chapter, (4.2.10), scales
as a function of particle number. Speci�cally, we wish to modify our interference setup
by considering a whole collection of particles passing through the pinholes and interfering
together. We are interested in the collective dynamics of the particle collection, to wit the
centre-of-mass dynamics. Our expectation is that the centre-of-mass dynamics will exhibit
interference suppression, the strength of which should now also scale as a function of the
number of particles in the collection (in addition to the other relevant parameters discussed
in section 4.4.2 above). Having the suppression strength scale with particle number as well
would o�er another avenue by which we could conceivably observe the transition of our
system to the classical regime, even though, as it stands, this transition is unobservable
for just a single particle (as discussed at the end of section 4.4.2).

4.5.1 Many-particle de�nitions

We begin with a brief overview of how our core de�nitions and results are straightfor-
wardly extended to the many-particle case. Consider a macroscopic object comprised of N
particles of equal mass m, with total mass M := Nm. Each particle has states described

by some Hilbert space H(n)
q , say. The total system is described by a Hilbert space, Htot

q ,

which constructed as a tensor product of the individual particle Hilbert spaces, H(n)
q ,

Htot
q :=

N⊗
n=1

H(n)
q .

For simplicity, we neglect the symmetrisation (respectively, antisymmetrisation) of the
tensor product states which would arise from considering a collection speci�cally comprised
of bosons (respectively, fermions). Let the nth particle coordinate operators be denoted

x̂
(n)
i ; we assume that coordinate operators belonging to di�erent particles commute,[

x̂
(l)
i , x̂

(n)
j

]
= 2iλϵijkδlnx̂

(l)
k . (4.5.1)

The collective motion is described with centre-of-mass coordinates,

x̂(CM) :=
1

N

N∑
n=1

x̂(n), (4.5.2)

satisfying the commutation relations[
x̂
(CM)
i , x̂

(CM)
j

]
=

1

N2

∑
l,n

[
x̂
(l)
i , x̂

(n)
j

]
= 2i

λ

N
ϵijk

1

N

∑
n

x̂
(n)
k

= 2i
λ

N
ϵijk x̂

(CM)
k ,

(4.5.3)

which are manifestly identical to those of x̂i, only with λ̃ ≡ λ
N in place of λ. As usual, we

also have the relative coordinates, de�ned by ξ̂(n) := x̂(n) − x̂(CM), which are easily seen
to have vanishing sum,

N∑
n=0

ξ̂(n) = 0,
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since collective motion is accounted for by x̂(CM).

We can also extend our free-particle solutions. The many-particle free-particle Hamiltonian
reads

Ĥtot =

N∑
n=1

Ĥ(n), (4.5.4)

where each Ĥ(n) is a straightforward generalisation of the free-particle Hamiltonian in
(3.0.1),

Ĥ(n) := − ℏ2

2m
∆̂(n).

Indeed, wherever we use a superscript (n) on a known operator, it should be assumed to

act on the nth Hilbert space, H(n)
q (or con�guration space, H(n)

c ), but otherwise be de�ned
as usual. Still, for the sake of completeness, we include below the remaining de�nitions for
the extended observables and operators, though all the de�nitions closely resemble those
in chapter 2, only with additional (n) superscripts:

∆̂(n) |ψ) := −
∣∣∣∣ 1

λr̂(n)
[(a(n)α )†, [a(n)α , ψ]]

)
, where

r̂(n) := λ(n̂(n) + 1), where

n̂(n) := (a(n)α )†a(n)α ,

where the a
(n)
α and (a

(n)
α )† act on the nth con�guration space. Now the (plane wave)

eigenstates of Ĥtot are (up to normalisation)∣∣∣k(i···N)
)
≡
∣∣∣k(1), . . . ,k(N)

)
:= exp

[
i

N∑
n=1

k(n) · x̂(n)

]
, (4.5.5)

with eigenvalues

Ĥtot
∣∣∣k(i···N)

)
=

[
2ℏ2

mλ2

N∑
n=1

sin2

(
k(n)λ

2

)] ∣∣∣k(i···N)
)
; (4.5.6)

this is a simple extension of the single particle plane waves, as per section 3.1. For one of
these plane wave solutions, we may de�ne the total momentum,

ktot :=
N∑
n=1

k(n),

as well as the relative momenta,

q(n) := k(n) − 1

N
ktot,

noting, as with relative coordinates, the vanishing sum

N∑
n=1

q(n) = 0. (4.5.7)

Rewriting the N -particle plane wave in terms of total and relative momenta yields∣∣∣k(i···N)
)
= exp

[
i

N∑
n=1

(
1

N
ktot + q(n)

)
· x̂(n)

]

= exp

[
iktot · x̂(CM) + i

N∑
n=1

q(n) · x̂(n)

]
.
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4.5.2 Centre-of-mass dynamics

Given the above extensions of our de�nitions to the many-particle case, we wish to consider
now the collective dynamics of our particles. We should keep in mind that, in general,
our system Hamiltonian should now contain terms accounting for interactions between
the particles, and so is no-longer the simple free-particle Hamiltonian of (4.5.4). The
eigenstates of (4.5.5) are therefore not the whole picture as far as the states involved in
our interference setup goes.

At this stage, the typical next step (as followed in [32], for instance) would be to write
the Hamiltonian (that including interactions) in terms of centre-of-mass and relative coor-
dinates. Assuming translational invariance � i.e. assuming that the interactions depend
only on the relative coordinates � we would then be able to decouple the centre-of-mass
motion from the relative motion, leaving free-particle centre-of-mass dynamics with all of
the internal dynamics captured by the evolution of the relative coordinates.

In our context, the procedure is more involved for two reasons. The �rst is the more
complicated form of our Laplacian. Had we been able to formulate momentum observables,
P̂ , we would expect the Laplacian of a single particle to have taken the usual form, P̂ 2/2m.
In such a setting, upon extending to many particles, the centre-of-mass dynamics would
simply have the kinetic term (P̂ (tot))2/2M , an obvious generalisation of the single-particle
kinetic term. This is the situation in [32]. In contrast, as a result of the pervasive reliance
on spherical coordinates throughout the development of our formalism, we are unable to
easily construct momentum operators. As such, our Laplacian, (2.1.24), is not formulated
in terms of any more elementary observables, and it is unclear how the �total� Laplacian
should look. The second complication in our setting comes from the fact our centre-of-mass
and relative coordinates do not commute. This ultimately renders a clean decoupling of
centre-of-mass and internal dynamics in the Hamiltonian impossible.

In spite of these complications, it is nevertheless still possible to isolate the centre-of-mass
dynamics. For one, the centre-of-mass dynamics will still be governed, as usual, by the
free-particle contribution to the total Hamiltonian, namely (4.5.4). Furthermore, in the
case of non-interacting particles, we would expect the energy to comprise two contributions,
namely the centre-of-mass energy and the energy of the relative (internal) motion. Let us
therefore consider a plane-wave solution of the form (4.5.5), and momentarily suppose that
q(n) = 0 for all n ∈ {1, 2, . . . , N}. Under such an assumption, we expect the latter contri-
bution to the energy to vanish, which enables us to isolate the centre-of-mass dynamics.
With vanishing relative motion, the plane wave eigenstates are especially simple,∣∣∣k(i···N)

)
= exp

[
iktot · x̂(CM)

]
, (4.5.8)

as are the corresponding energy eigenvalues (4.5.6),

Ĥtot
∣∣∣k(i···N)

)
=

2Nℏ2

mλ2
sin2

(
ktotλ

2N

) ∣∣∣k(i···N)
)

=
2ℏ2

Mλ̃2
sin2

(
ktotλ̃

2

)∣∣∣k(i···N)
)
.

(4.5.9)

Without relative motion, we can even simplify the form of Ĥtot. To see this, �rst de�ne
the total boson number operator in the obvious way,

n̂tot :=

N∑
n=1

n̂(n),
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then split the Hamiltonian as Ĥtot ≡ Ĥ0 + Ĥ1, where the action of each term on a state
ψ ∈ Htot

q (we temporarily suppress ket notation for simplicity) is de�ned by

Ĥtot ψ =
ℏ2

2mλ2

N∑
n=1

1

n̂(n) + 1
[a(n)α

†
, [a(n)α , ψ]]

=
ℏ2

2Mλ̃2
1

n̂tot +N

N∑
n=1

[a(n)α

†
, [a(n)α , ψ]]︸ ︷︷ ︸

Ĥ0 ψ

+
ℏ2

2mλ2

N∑
n=1

(
1

n̂(n) + 1
− N

n̂tot +N

)
[a(n)α

†
, [a(n)α , ψ]]︸ ︷︷ ︸

Ĥ1 ψ

.

(4.5.10)

In doing so, we notice that it is only the �rst term, Ĥ0, which contributes to the energy
eigenvalue associated with the plane wave ψCM ≡

∣∣k(i···N)
)
. Indeed, we �nd that

[
a(n)α

†
,
[
a(n)α , ψCM

]]
=

4r̂(n)

λ
sin2

(
ktotλ

2N

)
ψCM,

using the same argument as in the derivation of (3.1.6) presented in section 3.1, only with
the replacement k→ ktot/N and the relevant (n) superscripts. Then the full action of Ĥ0

on ψCM readily follows as

Ĥ0

∣∣ktot
)
=

ℏ2

2Mλ̃2
1

�����
n̂tot +N

[
N∑
n=1

4�����
(n̂(n) + 1)

]
sin2

(
ktotλ

2N

) ∣∣ktot
)

=
2ℏ2

Mλ̃2
sin2

(
ktotλ̃

2

)∣∣ktot
)
,

which indeed accounts for the full energy, as per (4.5.9). Consequently,

Ĥ1

∣∣ktot
)
= 0,

meaning that, for plane wave solutions without relative motion, the free Hamiltonian, Ĥtot,
reduces to just the �rst term, Ĥ0. The conclusion we draw from this analysis is that Ĥ0

comprises the part of Ĥtot responsible for centre-of-mass dynamics, whereas Ĥ1 constitutes
the part responsible for internal dynamics, together with any coupling between internal-
and centre-of-mass dynamics.

For the more general case where the q(n) are allowed to be non-zero, the energy acquires
additional contributions. Speci�cally, there is a quadratic (in q(n)) contribution arising
from the internal motion, as well as higher-order (in λ) corrections that re�ect the coupling
between the centre-of-mass and internal dynamics. We can verify this directly by expanding
the right-hand-side of (4.5.6) in the q(n),

Ĥtot
∣∣∣k(i···N)

)
=

 2ℏ2

mλ2

N∑
n=1

∞∑
l=0

(−1)l

(2l + 1)!

(
(q(n) + 1

N ktot)2λ2

4

)2l+1
 ∣∣∣k(i···N)

)

=

[
ℏ2

2m

N∑
n=1

(
(q(n))2 +������2

N
q(n) · ktot +

1

N2
(ktot)2

)
+O(λ4)

] ∣∣∣k(i···N)
)
,
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where the middle term vanishes due to (4.5.7).

For the even more general case where we introduce interactions depending only on the
relative coordinates, the Hamiltonian can still be split as in (4.5.10), only now with the
interactions being included in Ĥ1. In this case, the interactions will also contribute to the
internal energy as a binding energy, as well as to the coupling between the centre-of-mass
and internal dynamics. However this coupling is once again of higher-order in λ (since the
internal and centre-of-mass dynamics decouple in the commutative limit, any coupling must
be at least O(λ)), so that we can decouple the centre-of-mass and internal dynamics to the
lowest order in λ and include higher-order e�ects perturbatively. Finally, we remark that
the strength of the coupling between internal and centre-of-mass coordinates will in general
scale with the magnitudes of the q(n), which in turn are controlled by the temperature,
T , of the particle collection. This is because the internal energy is (to leading order in λ)
quadratic in the q(n), meaning we can apply the equipartition theorem, which states that

1

2
kBT ∼

ℏ2(q(n))2

2m
.

The upshot is that we can expect the e�ect of the coupling to be less signi�cant at low
temperatures.

4.5.3 Many-particle classical limit

The crucial takeaway from the previous subsection is that, comparing the eigenstates and
energy eigenvalues of Ĥtot ((4.5.8) and (4.5.9)) with those of the single particle free Hamil-
tonian ((3.1.1) and (3.1.6)), it is clear that we can treat the centre-of-mass dynamics like
those of a single particle with mass M , momentum ktot, and non-commutative parame-
ter λ̃. With this in mind, we can revisit the classicality condition of (4.4.1), which for a
collection of particles now requires

r ≪ 4λ̃ d2MEtot

ℏ2
=

4λd2mEtot

ℏ2
. (4.5.11)

Now the energy is extensive, since, by (4.5.9), we have that

Etot = N · 2ℏ
2

mλ2
sin2

(
ktot/N λ

2

)
= N · 2ℏ

2

mλ2
sin2

(
⟨k⟩λ
2

)
= N⟨E⟩,

where we have de�ned the average momentum and energy,

⟨k⟩ := 1

N
ktot, and ⟨E⟩ := 2ℏ2

mλ2
sin2

(
⟨k⟩λ
2

)
.

Finally, we can repeat the back-of-the-envelope estimate that we performed in section 4.4.2
with the new condition of (4.5.11). We again take λ to be of the order of a Planck length,
d to be on the order of 1cm, and consider a collection of electrons with average energy
1eV. Supposing we have a number of electrons on the order of Avogadro's number, we can
expect to see interference suppression at distances on the order of

r ≲
(10−35m)(10−2m)2(10−31 kg)(1023)(10−19 kgm2 s−2)

(10−34 kgm2 s−1)2

= 100m.
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This is much more realistically detectable within a laboratory. Conversely, to observe
suppression at distances of the order of a meter for this number of particles requires an
average energy orders of magnitude less than an electron volt, making the interference
suppression entirely observable at non-relativistic energies. This represents a signi�cant
improvement over the situation in the Moyal plane, where, although a quantum-to-classical
transition exists, it is only observed for particles travelling at speeds well above the speed
of light, even when collections of particles are considered [32].

4.6 Prospects for experimental realisation

At this stage, we have established the plausibility of observing an isolated double-pinhole
setup undergoing a classical transition at realistic length scales and energies. In particular,
when we compare the discussions of sections 4.4.2 and 4.5.3, it is clear that the key ingre-
dient for the observability of this transition, at least in the context of our double-pinhole
setup, is a large number of particles. This poses a challenge when it comes to actually
realising our hypothetical setup in a real laboratory, namely that one needs a means of re-
liably manipulating a quantum state comprised of a large number of particles. In this �nal
section, we brie�y connect our �ndings with existing (or feasible) experiments to evaluate
the plausibility of probing the quantum suppression e�ect in practice.

One promising possible experiment derives from work by van Es et al. [49] which describes
a beam-splitter setup able to dynamically split a propagating Bose-Einstein condensate
(BEC) into two parts, each guided along a separate path. Repeating the beam-splitter
operation, after allowing each beam to propagate some distance, yields a Mach-Zehnder
interferometer. This achieves the same e�ect as the double-pinhole setup, where the path-
length di�erence between each pinhole and a given measurement point is easily mimicked
by adjusting the phase of the interferometer.

An issue with this proposal is that van Es et al. only achieve the beam-splitting operation
for 3 × 104 non-interacting 87Rb atoms, a far-cry from the Avogadro's number assumed
for our estimates. If we repeat the estimate accounting for the smaller number of heavier
particles, we get the condition r ≲ 10−11m for observable suppression. Of course, this is
unreasonably small, but it is possible that the energies involved could be higher, or the
non-commutative parameter larger, than we assume. We therefore conclude that an exper-
iment of this nature, only with a slightly larger BEC sample, could conceivably probe the
suppression we describe. Larger samples of BEC (with as many as 1.1× 109 H atoms [19])
have at least successfully been prepared in the past [44, 48].

Other experimental prospects may include placing an optomechanical system into superpo-
sition, similar to the setup described by Kleckner et al. [26], or controlling and interfering
a levitated nanosphere [15, 46, 29]. These experiments all go some way towards addressing
the central di�culty with our setup, which lies in creating and manipulating a relatively
massive quantum superposition.

However, such experiments all share a signi�cant limitation, meaning we ought to exercise
caution in comparing their results directly with our predictions. The issue is that real-world
experiments also introduce a true environment with which the particles in the setup may
interact. Such an environment would most likely lead to higher levels of decoherence and
interference suppression than our theory predicts, since our predicted suppression applies
to an ideally isolated system. Moreover, it is hard to imagine how one might distinguish
between the two sources of decoherence in such an experiment. Still, with more control
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over the environment, these types of experiments may in the future o�er a way of probing
this phenomenon.
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Chapter 5

Summary and Conclusion

Our investigation started o� premised on the idea that the non-commutative nature of
space may play a role in understanding the measurement problem � more speci�cally,
macroscopic objectivity, the emergence of classical behaviour in systems of su�cient scale
(i.e. energy or number of constituent particles). We were motivated by a recent inves-
tigation which suggested that, at least in the two-dimensional Moyal plane formalism of
NCQM, the non-commutative geometry itself may be responsible for giving rise to such a
transition [32].

We discussed various reasons for which we feel it is worthwhile to investigate whether a sim-
ilar process takes place in a higher-dimensional formalism for NCQM. As such, inspired by
the approach of [32], our investigation focused on treating a two-pinhole interference setup
in the three-dimensional fuzzy sphere formalism of NCQM, both for individual particles
and collections of particles. In the end, we do indeed �nd that this combination of system
and formalism exhibits another compelling example of an intrinsic quantum-to-classical
transition. As in the Moyal plane, the transition we �nd is continuous as a function of
system parameters (such as energy and number of particles), and able to take place even
for a completely isolated system � that is, without the need for requiring any additional
external environment such as a heat bath.

Our �ndings are important for several reasons. Firstly, taken in combination with [32], they
reinforce the notion that it really is the small-scale structure of space which is responsible
for the suppression of quantum behaviour at a macroscopic scale. Secondly, they address
some key issues with the situation in the Moyal plane � most notably, they show that
in three dimensional fuzzy space, unlike in the 2D Moyal plane, the quantum-to-classical
transition is actually capable of being observed for realistic numbers of particles travelling
at non-relativistic speeds. Thirdly, they uncover an additional system parameter which is
also involved in controlling the strength of the quantum suppression in three dimensions,
namely the distance away from a system at which a measurement is performed � that
is to say, we �nd that systems appear more classical when viewed at appropriate length
scales. The latter is an important testable prediction of our theory. Altogether, the results
are promising and wholly support the proposed link between the microscopic structure of
space and macroscopic emergence of classicality.

Of course, the model examined in this thesis is ultimately still a special case. Further
research is needed to fully understand the consequences of our result and its potential
implications for an understanding of the most general formulation of the measurement
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problem. A starting point might be treating a general von Neumann measurement setup
within the fuzzy-space formalism, similar to the treatment in the Moyal plane performed
by [32]. Another direction for future research is in connecting our predictions with experi-
mental results; we proposed some experimental setups that could form a basis for such an
investigation. However, a fundamental di�culty with directly testing our theory involves
isolating the system under investigation from its environment � since our predictions
pertain to a perfectly-isolated system, any suitable experiment must somehow remove or
account for additional decoherence e�ects arising from a laboratory environment.

In summary, we found that, at least in the setting of our toy model, non-commutativity of
space does indeed lead to a suppression of quantum e�ects at realistic energy and length
scales. This is a promising �nding, and a incentive for future investigations to extend,
generalise, or test our �ndings.
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Appendix A

Transformation Laws of Coherent

States

Several of our calculations rely on a closed form for the transformation of a Glauber
coherent state |z⟩ (de�ned in section 2.2.1) under the action of a plane wave. In this short
appendix, we derive the relevant transformation law.

As noted in section 3.1, the plane waves represent SU(2) group elements (and all SU(2)
group elements are represented by the plane waves). Recall that a general g ∈ SU(2) can
be written in the form

g ≡ g(q) = exp

[
i

2
q · σ

]
, (A.0.1)

for some dimensionless vector q with norm q ∈ [0, 2π] and direction q̂. As already men-
tioned in section 3.1, this is because SU(2) is connected and compact, implying that the
exponential map exp: su(2) → SU(2) is surjective. We can express (A.0.1) alternatively
by Taylor expanding the relevant exponential, and using the fact that (q̂ ·σ)2 = I for any
unit vector q̂. This gives

g(q) = cos(q/2) + i sin(q/2) q̂ · σ, (A.0.2)

Now, thanks to the Lie algebra isomorphism x̂i 7→ λσi, we can represent g as an operator
on Hc by

Π̂(g) = exp

[
iq · x̂

2λ

]
,

which formally resembles a plane wave with wavenumber q (see (3.1.1)), only q is dimen-
sionless, and so does not represent a true wavenumber. To completely write Π̂(g) in the
form of a plane wave, we could introduce dimensions by replacing q ≡ 2λk, where k is a
true dimensionful wavenumber.

Note that, since Π̂(g) commutes with r̂2 (as each x̂i does), it preserves the r̂
2-eigenspaces

(i.e. those with �xed j, as de�ned in (2.1.17)). In particular, plane waves preserve the
vacuum state,

Π̂(g) |0⟩ = |0⟩ ,

and in the j = 1/2 irrep they act simply as ordinary SU(2) matrices,

Π̂(g) |j = 1/2,m⟩ = g

[
|j = 1/2,m = +1/2⟩
|j = 1/2,m = −1/2⟩

]
; (A.0.3)
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This is merely a statement of the j = 1/2 Wigner D-function entries (see section 4.3.4
in [1], for instance).

Now consider the action of a plane wave on a coherent state. The following computation
closely mirrors that of (3.1.4) and the subsequent lines, so we likewise de�ne Ĵi ≡ 1

2λ x̂i in
this context. Then

Π̂(g) |z⟩ = e−
1
2
z̄αzα Π̂(g) ezαa

†
α |0⟩

= e−
1
2
z̄αzα Π̂(g) ezαa

†
α Π̂(g)† |0⟩

= e−
1
2
z̄αzα exp

[
zα

(
Π̂(g) a†α Π̂(g)

†
)]
|0⟩ ,

so the problem reduces to deriving the transformation law for the boson creation operators

a†α under the conjugation eiq·Ĵa†αe−iq·Ĵ . But it can be easily shown that these boson cre-
ation operators transform like rank-1/2 spherical tensor operators with respect to the Ĵi.
This just amounts to checking (see section 5.2.3 in [1], for instance), the set of commutation
relations

[Ĵ3, a
†
α] =

(
3

2
− α

)
a†α,

[Ĵ+, a
†
α] = δα2 a

†
1,

[Ĵ−, a
†
α] = δα1 a

†
2,

(A.0.4)

where Ĵ± := Ĵ1 ± iĴ2, as usual. These commutators are entirely trivial (but tedious) to
check, since we may use (2.1.6) to write each Ĵi entirely in terms of creation and annihilation
operators. The implication is that the creation operators transform under conjugation with
Π̂(g) by the j = 1/2 Wigner D-matrices (see section 5.2 of [1], for instance),

eiq·Ĵa†αe
−iq·Ĵ = gβαa

†
β.

As such, we can �nally write

Π̂(g) |z⟩ = e−
1
2
z†z exp

[
zα

(
eiq·Ĵa†αe

−iq·Ĵ
)]
|0⟩ ,

= e−
1
2
(gz)†(gz) ezαgβαa

†
β |0⟩ ,

= e−
1
2
(gz)†(gz) ea

†
β(gz)β |0⟩ ,

= |gz⟩ ,

(A.0.5)

which is a remarkably simple transformation law, reminiscent of (3.1.4) itself. In summary,
in terms of the dimensionful wavenumber k introduced above, the action of a general plane
wave on a coherent state is given by

eik·x̂ |z⟩ = |g(k) z⟩ , where

g(k) := eiλk·σ = cos(λk) + i sin(λk)k̂ · σ.
(A.0.6)
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Matrix Elements with Coherent

States

In this appendix we develop the necessary theory to compute the matrix element of a
general function g(n̂) of the boson number operator with respect to a set of coherent
states. The key step involves introducing new creation operators, then expanding the
coherent states in the Fock number basis of these new operators; this step is presented
in [37]. The original work in this appendix comes from the special cases we consider � in
particular, we derive a more compact form for the general case where g is a polynomial,
and, more notably, we consider the case where g is the (non-commutative) spherical Hankel
function gH,l. The latter is relevant to the discussion in section 3.2.2, as well as the main
calculation of chapter 4.

B.1 General functions g(n̂)

Consider a function g(n̂) of the number operator n̂ = a†αaα. We wish to compute the ma-
trix element

〈
z1
∣∣g(n̂)∣∣z2

〉
, where the

∣∣zi〉 are (possibly distinct) coherent states, possibly
di�erent. As in [37], we start by introducing new creation operators,

A†i :=
1√
Ri
ziαa
†
α, where Ri = z̄iαz

i
α. (B.1.1)

This allows us to write the coherent states in terms of displacement operators involving
the new creation operators and acting on the vacuum state,∣∣zi〉 = D̂i |0⟩ ≡ e−Ri/2+

√
RiA

†
i |0⟩ .

Now to compute the desired matrix element, we need only expand the exponential in each
displacement operator, which lets us write each coherent state in the basis of Fock states
(those corresponding to the new creation operators) as

∣∣zi〉 = e−Ri/2
∞∑
n=0

R
n/2
i√
n!
|n⟩i , (B.1.2)

where the subscript on the ket indicates the boson mode (i.e. distinguishes between appli-

cation of each of the two A†i ).
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We can now substitute this expansion into the desired matrix element, which gives

〈
z1
∣∣g(n̂)∣∣z2

〉
= e−(R1+R2)/2

∑
n,m

R
n/2
1 R

m/2
2√

n!m!
1⟨n|g(n̂)|m⟩2

= e−(R1+R2)/2
∑
n,m

R
n/2
1 R

m/2
2√

n!m!
g(m) 1⟨n|m⟩2

(B.1.3)

Now clearly 1⟨n|m⟩2 = 0 whenever n ̸= m, since each |n⟩i can be written (by binomial

expansion on (A†i )
n) as a linear combination of two-boson-mode number states of the form

|l1, l2⟩, where l1 + l2 = n � to wit, |n⟩i indeed contains n total particles. However, we
must be careful to evaluate 1⟨n|n⟩2, since there is a non-trivial commutator,[

A1, A
†
2

]
=

1√
R1R2

z̄1αz
2
β

[
aα, a

†
β

]
=

1√
R1R2

z̄1αz
2
α.

(B.1.4)

This leads directly to a non-trivial Fock state overlap, since

1⟨n|n⟩2 =
1

n!
⟨0|(A1)

n(A†2)
n|0⟩

=
1

n!
⟨0|(A1)

n−1
([
A1, (A

†
2)
n
]
+�����

(A†2)
nA1

)
|0⟩

=
n

n!

[
A1, A

†
2

]
⟨0|(A1)

n−1(A†2)
n−1|0⟩

=
n(n− 1)

n!

[
A1, A

†
2

]2
⟨0|(A1)

n−2(A†2)
n−2|0⟩

= . . .

=
[
A1, A

†
2

]n
.

Here we have repeatedly used the fact that it follows from [Ĵ , K̂] = cÎ that [Ĵ , K̂n] =
cnK̂n−1 (which is easily proven by induction using the Leibniz rule).

With these expressions, (B.1.3) simpli�es to

〈
z1
∣∣g(n̂)∣∣z2

〉
= e−(R1+R2)/2

∑
n,m

R
n/2
1 R

m/2
2√

n!m!
g(m)

[
A1, A

†
2

]n
δn,m

= e−(R1+R2)/2
∑
n

g(n)

(
z̄1αz

2
α

)n
n!

.

(B.1.5)

Deriving a closed form for the sum of this series is often straightforward using the umbral
calculus [35]. That said, this little-known calculus is thankfully seldom needed; indeed,
we proceed to explicitly compute the sum for polynomial functions g without reference to
umbral calculus.

B.2 Polynomials g(n̂)

In the case where g is a polynomial, deriving a closed form for the sum of the series in
(B.1.5) is a straightforward exercise. To avoid unnecessarily complicating the notation (and
recognising that both sides of (B.1.5) are linear in g), suppose without loss of generality
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that g(n) = nk. For convenience, also de�ne K := z̄1αz
2
α. Then we may rewrite g(n) using

the well-known relationship [35]

g(n) = nk =

k∑
m=0

{
k
m

}
nm,

where nm denotes the falling factorial,

nm :=
m−1∏
k=0

(x− k),

and

{
k
m

}
are the Stirling numbers of the second kind. Then the sum in (B.1.5) becomes

∞∑
n=0

g(n)
Kn

n!
=

k∑
m=0

{
k
m

} ∞∑
n=0

nm
Kn

n!

=
k∑

m=0

{
k
m

} ∞∑
n=m

nm
Kn

n!

=

k∑
m=0

{
k
m

} ∞∑
n=0

(n+m)m
Kn+m

(n+m)!

=
k∑

m=0

{
k
m

}
Km ·

∞∑
n=0

Kn

n!
.

The second line is justi�ed by the observation that the �rst m terms of the n-sum are
identically zero, since nm = 0 for all n ∈ {0, 1, . . . ,m− 1}, so we can take the lower bound
of the sum as n = m. Then in the third line, we shift this bound back down to start at
zero. We are left with the product of two well-known power series, namely that of the
exponential map,

ex =
∞∑
n=0

xn

n!
,

and that of the Touchard polynomial (or sometimes Bell polynomial),

Tk(x) =

k∑
m=0

{
k
m

}
xm.

The latter also has a closed form (unsurprisingly, that of a polynomial) which is easily
looked up, say in the OEIS [42]. We tabulate the �rst few Touchard polynomials in table
B.1 for convenience in our calculations.

k Tk(x)

0 1
1 x
2 x2 + x
3 x3 + 3x2 + x
4 x4 + 6x3 + 7x2 + x

Table B.1: Touchard polynomials Tk(x) up to k = 4

In summary, we have the special case of (B.1.5),〈
z1
∣∣n̂k∣∣z2

〉
= e−(R1+R2)/2+KTk(K), (B.2.1)
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for Ri = z̄iαz
i
α and K = z̄1αz

2
α. This of course recovers the usual overlap of coherent states,

as per (2.2.3), in the case k = 0.

B.3 Spherical Hankel function g(n̂) = gH,l(n̂, k)

In this subsection, we consider one more special case � we compute the (leading-order be-
haviour of the) matrix element of the (asymptotically-expanded) non-commutative spher-
ical Hankel function (see (3.2.7)),

g(n̂) ≡ gH,l(n̂, k) =
ei(n̂+l+1)κ

(in̂)l+1
,

with respect to an identical pair of coherent states,
∣∣z1
〉
=
∣∣z2
〉
≡ |z⟩ . This particular

case, while highly speci�c, is of great importance to the discussion in section 3.2 and the
subsequent calculation in chapter 4, so it warrants discussion.

Now, we can of course apply the result of section B.1 in the present context, but some
care is needed � the coherent state |z⟩ is a superposition of all boson number states,
including the vacuum state, so the singular 1/n̂ causes divergence in a naïve calculation.
This is not really a problem: not only is the overlap |⟨0|z⟩|2 = e−R/2 vanishingly small for
R ≡ z̄αzα ≫ 1 (which is assumed for the asymptotic form of gH,l as given above), but we
can entirely remove the divergence by de�ning g piecewise as the regular solution gJ,l within
some region around the origin and the irregular solution gH,l outside of this region (see
section 3.2.2 for a detailed discussion of the solutions in question). Equivalently, we may
as well use only the irregular form, but exclude the point n = 0 from our computations.
As such, we invoke (B.1.5), but begin the sum at n = 1, whereby

Hl,κ(R) ≡ ⟨z|
ei(n̂+l+1)κ

(in̂)l+1
|z⟩

= e−R
∞∑
n=1

ei(n+l+1)κ

n! (in)l+1
Rn

=
ei(l+1)κ

il+1
e−R(eiκR)

∞∑
n=0

(eiκR)n

(n+ 1)! (n+ 1)l+1
,

using the shorthand notation Hl,κ(R) for the desired matrix element. Now the remaining
sum can be written as a generalised hypergeometric function,

pFq

[
a1, a2, · · · ap
b1, b2, · · · bq

; eiκR

]
.

Indeed, if βn denotes the nth coe�cient,

βn :=
1

(n+ 1)!(n+ 1)l+1
,

then we have β0 = 1 (as required by convention of the coe�cients in the series of a
hypergeometric function), and the ratio

βn+1

βn
=

(n+ 1)l+2

(n+ 2)l+2(n+ 1)
,

is clearly a rational function of n, from which we can read o� the values p = q = l + 2,
a1 = a2 = · · · = ap = 1, and b1 = b2 = · · · = bq = 2, giving

Hl,κ(R) =
ei(l+2)κ

il+1
Re−R l+2Fl+2

[
1, 1, · · · 1
2, 2, · · · 2; e

iκR

]
. (B.3.1)
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It is worth noting that (by the ratio test) the series representing this hypergeometric
function is both convergent on all of C and entire, since p = l + 2 = q [50].

There is unfortunately no algebraic representation of l+2Fl+2
, so (B.3.1) is the best we

can do without further approximation. However, since we are already using an asymptotic
form of gH,l, we should similarly seek only the leading-order large-R asymptotic behaviour
of Hl,k. Thankfully, the relevant hypergeometric function has a well-known asymptotic
expansion, given in equations 1.2 and 1.3 of [50], which in our context simpli�es to

l+2Fl+2

[
1, 1, · · · 1
2, 2, · · · 2; z

]
∼ ezz−(l+2)

∞∑
k=0

ck z
−k,

for z → ∞. The coe�cients ck are de�ned recursively; for our purposes it su�ces to
merely note that c0 = 1, since it is clearly the k = 0 term that de�nes the leading-order
behaviour in this asymptotic limit. As such, we simply truncate the series after the �rst
term. Substituting the appropriate argument and simplifying, we arrive at the leading-
order large-R behaviour of our matrix element,

Hl,κ(R) ∼
eR(cosκ−1)+iR sinκ

(iR)l+1
.
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