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We investigate a quantum-to-classical transition which arises naturally within the fuzzy sphere
formalism for three-dimensional non-commutative quantum mechanics. This transition may be
understood as the mechanism of decoherence, but without requiring an additional external heat bath.
We focus on treating a two-pinhole interference configuration within this formalism, as it provides
an illustrative toy model for which this transition is readily observed and quantified. Specifically,
we demonstrate a suppression of the quantum interference effects for objects passing through the
pinholes with sufficiently-high energies or numbers of constituent particles.
Our work extends a similar treatment of the double slit experiment, presented in [1], within the

two-dimensional Moyal plane, only it addresses two key shortcomings that arise in that context.
These are, firstly that the interference pattern in the Moyal plane lacks the expected reflection sym-
metry present in the pinhole setup, and secondly that the quantum-to-classical transition manifested
in the Moyal plane occurs only at unrealistically high velocities and/or particle numbers. Both of
these issues are solved in the fuzzy sphere framework.

I. INTRODUCTION

Non-commutative quantum mechanics (NCQM) sets
ordinary quantum mechanics within a spacetime with
non-commutative geometry. Such models were proposed
originally to regularise field theories [2] — an approach
now supplanted by renormalisation. Still, NCQM re-
mains well motivated: non-commutativity implies a min-
imum length scale, the need for which in a consistent
formulation of quantum mechanics and gravity is com-
pellingly argued by Doplicher et al. [3]. Indeed, non-
commutative spacetime geometries arise from simple lim-
its of string theories [4, 5] — popular contenders for a
quantum theory of gravity.

At this stage, both quantum mechanics [6, 7] and
quantum field theory [8] have been formulated on non-
commutative spaces, and many classical problems from
ordinary quantum mechanics have been reexamined in
these formalisms, including the spherical well [9], and
three-dimensional scattering [10].

NCQM may provide insight into another large open
question in modern physics, namely the measurement
problem, which pertains to the transition from quantum
to classical behaviour. Historically this has been largely
a distinct problem from the unification of quantum me-
chanics with gravity; yet, there is reason to believe that
the problems may be related (for instance, arguments by
Penrose [11]). The connection to NCQM in particular
comes in the form of a recent investigation by Pittaway
et al. [1], which demonstrated a continuous quantum-to-
classical transition that arises naturally within the Moyal
plane formalism of NCQM.

Of particular relevance to this paper is the section of
[1] that treats double-slit interference within the non-
commutative plane. Here it was found that the non-
commutativity modifies the usual interference pattern in
such a way that the quantum effects are suppressed for

objects passing through the slits with sufficiently-high
energies or numbers of constituent particles. This is
one manifestation of the remarkable quantum-to-classical
transition to which we alluded; it shows that the struc-
ture of space at the smallest length scales can play a di-
rect role in the suppression of quantum effects at larger
length scales.

However, the two-dimensional interference calculation
comes with a number of caveats. Firstly, the commuta-
tion relations for the Moyal plane break rotational sym-
metry, and as such the interference pattern fails to be
symmetric under reflection about its centre. Secondly,
and more crucially, if one supposes that the quantum-to-
classical transition should occur at non-relativistic veloc-
ities, for a number of protons on the order of Avogadro’s
number, one obtains a non-commutative parameter many
orders of magnitude larger than the Planck length —
much larger than expected.

We address both of these caveats by moving to three
dimensions, considering now two-pinhole interference in
the fuzzy sphere formalism for three-dimensional non-
commutative space, where rotational symmetry is pre-
served. As with the two-dimensional case, the partic-
ular interference setup serves merely as a toy model for
analysing the quantum-to-classical transition in 3D fuzzy
space. We find both that the problematic reflection-
asymmetry in the interference pattern is absent in three
dimensions, and that quantum effects are more strongly
suppressed than in two dimensions; that is, we observe
suppression at realistic length scales and non-relativistic
speeds.

Our paper is structured as follows. Sections II and III
comprise background material. In section II we review
the formalism of NCQM in fuzzy space; we are especially
thorough with our presentation here because notation
and conventions vary in the literature. In section III we
summarise the non-commutative free particle solutions.
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In section IV we calculate our main result: the probabil-
ity amplitude for measuring a single particle on a screen
behind a pinhole interference setup in fuzzy space. In
section V we discuss physical implications of the result,
show that it reduces in the appropriate limit to the known
commutative result, and derive how the suppression ef-
fect scales with multiple particles. Finally, a summary
of the results and concluding remarks are given in sec-
tion VI.

II. FORMALISM

A. Fuzzy space

NCQM begins with a non-commutative coordinate op-
erator algebra. The simplest such algebra — that with
Heisenberg-Moyal commutation relations, [x̂i, x̂j ] = iθij ,
— suffices for two dimensions [6, 12], but breaks three-
dimensional rotational symmetry [39] (this is apparent
because the tensor θij is skew-symmetric and so has a
vanishing eigenvalue, the associated eigenvector of which
is a preferred commutative direction [9]). A better alter-
native [12, 13], adopted here, is the su(2) algebra of fuzzy
sphere geometry, given by

[x̂i, x̂j ] = 2iλ εijkx̂k, (1)

where λ is a constant with dimensions of length, called
the non-commutative parameter.

We represent this algebra concretely using the Jordan-
Schwinger representation, whereby su(2) elements act on
a two-boson-mode Fock space,

Hc := span

{
|n1, n2〉 ≡

(a†1)n1(a†2)n2

√
n1!n2!

|0〉

∣∣∣∣∣ n1, n2 ∈ N

}
,

via the “Jordan map” [14],

x̂i 7→ λ a†µσ
i
µνaν . (2)

Here a†µ and aµ (for µ = 1, 2) are the standard creation
and annihilation operators respectively, and |0〉 ≡ |0, 0〉 ∈
Hc is the vacuum state. As an su(2)-representation, Hc

decomposes into irreps,

Hc =
⊕
n∈N
Fn, where

Fn := span {|n1, n2〉 ∈ Hc | n1 + n2 = n} ,
(3)

which are just as well considered irreps of SU(2), as SU(2)
is simply-connected [15]. These irreps are indexed by the
su(2) Casimir operator, r̂2 = x̂ix̂i which can be rewritten
in terms of the boson number operator, n̂ = a†µaµ, as
r̂2 = λ2n̂(n̂ + 2). Its square root (to leading order in λ)
has the right dimensions for a measure of radius, given
by

r̂ = λ(n̂+ 1). (4)

Now Hc contains each su(2)-irrep, and hence so too
each quantised radius, exactly once. This motivates our
choice of the Jordan-Schwinger representation: we think
of Hc as constructing 3D space from a collection of con-
centric spherical shells — one for each quantised radius.
We call Hc fuzzy space or configuration space, and write
its general element as a ket, |ψ〉, consistent with the no-
tation above.

B. Quantum state space

Our quantum state (Hilbert) space, Hq, is defined as
the operator algebra acting on Hc generated by the co-
ordinates. We write its elements |ψ) to distinguish them
from those of Hc. The inner product on Hq is chosen to
be the weighted Hilbert-Schmidt inner product [40],

(ψ|φ) := 4πλ2 Trc

(
ψ†r̂φ

)
= 4πλ3 Trc

(
ψ†(n̂+ 1)φ

)
, (5)

where the trace Trc is performed over configuration space
Hc.

We can characteriseHq as the space of Hilbert-Schmidt
operators on Hc which commute with the Casimir oper-
ator [13], and express it in the form

Hq =

{
ψ ≡

∑
mi,ni

Cm1,m2
n1,n2

(a†1)m1(a†2)m2an1
1 an2

2∣∣∣∣∣ ‖ψ‖ <∞, m1 +m2 = n1 + n2

}
,

(6)

where ‖ψ‖ := (ψ|ψ) uses the inner product of (5). The
condition m1 +m2 = n1 + n2 ensures commutation with
r̂2.

We also define the larger space, B2(Hc) ⊃ Hq, contain-
ing all Hilbert-Schmidt operators on Hc (with identical
inner product), which is also a Hilbert space [16]. Indeed,
we get an isometric isomorphism (see section 2.6 of [17])

B2(Hc) ∼= Hc ⊗H∗c
= span {|m1,m2〉〈n1, n2| | ni,mi ∈ N} ,

(7)

up to completion with respect to the norm.
The restriction of having to commute with r̂2 forces

operators in Hq to restrict to each subspace Fn in (3).
Explicitly this means

Hq =
⊕
n∈N

B2(Fn) ⊂ B2

(⊕
n∈N
Fn

)
= B2(Hc), (8)

so that, in the notation of (7),

Hq = span {|m1,m2〉〈n1, n2| | n1 + n2 = m1 +m2} ,
(9)



3

where we recall from (3) the constraint defining each Fn.
Of course, each ket |n1, n2〉 ∈ Hc is also a simultaneous
eigenket of r̂2 = x̂µx̂µ and x̂3:

r̂2 |n1, n2〉 = 4λ2 j(j + 1) |n1, n2〉 , where j =
n1 + n2

2

x̂3 |n1, n2〉 = 2λm |n1, n2〉 , where m =
n1 − n2

2
.

(10)
allowing us to alternately label using quantum numbers
j and m, which, wherever they appear, (implicitly) range
over j ∈ N/2 and m ∈ Z/2∩ [−j, j]. In this notation, (9)
is yet simpler:

Hq = span {|j = n/2,m〉〈j = n/2,m′| | n ∈ N} . (11)

C. Observables

As usual, observables are Hermitian operators on Hq.
We begin by seeking operators X̂i and L̂j for position and
angular momentum respectively (we use capital letters to
distinguish observables from operators on Hc).

Position operators X̂i act as usual by left multiplica-
tion,

X̂i |ψ) := |x̂iψ) . (12)

given that they should share the commutation relations
of the coordinates xi. We also lift the radius operator r̂
to an observable by the same multiplicative action

R̂ |ψ) := |r̂ψ) . (13)

Angular momentum operators L̂i have the adjoint action,

L̂i |ψ) :=

∣∣∣∣ ~2λ [x̂i, ψ]

)
, (14)

which is easily shown to yield the normal angular mo-
mentum commutation relations.

Some other observables are also straightforward gen-
eralisations of their commutative counterparts. For in-
stance, the Hamiltonian takes the familiar form

Ĥ = − ~2

2m
∆̂ + V (R̂), (15)

only now the Laplacian is defined

∆̂ |ψ) := −
∣∣∣∣ 1

λr̂
[a†α, [aα, ψ]]

)
, (16)

the form of which is motivated in [12]. In particular,
each L̂i commutes with ∆̂, and hence with Ĥ, ensuring
angular momentum conservation.

Another conserved observable, defined on the entirety
of B2(Hc), is

Γ̂ |ψ) := |[n̂, ψ]) , (17)

whose eigenstates, given by

Γ̂ |m1,m2〉〈n1, n2| = (m1+m2−n1−n2) |m1,m2〉〈n1, n2| ,

manifestly span (a dense subset of) B2(Hc), as noted
above. Moreover, (9) implies that the physical state
space, Hq ⊂ B2(Hc) is the zero eigenspace of Γ̂. The
conservation of Γ̂ reassures us that physical states remain
so under time-evolution.

Finally, the linear operator

Q̂ :=
1

2π

∫ 2π

0

eiφΓ̂ dφ, (18)

is easily seen by the spectral theorem to project from
B2(Hc) onto ker Γ̂ ∼= Hq. This projection proves useful
in section IID for defining position measurement.

D. Position measurement POVM

One remaining subtlety in our NCQM framework is
the notion of position measurement. Since our position
operators X̂i do not commute, they have no simultaneous
eigenbasis, and so the notion of a position eigenstate must
be replaced with a minimal uncertainty state. It is well
known [18] that the Glauber coherent states,

|z〉 ≡ |z1, z2〉 = e−
1
2 z̄αzαezαa

†
α |0〉 , where z =

[
z1

z2

]
∈ C2,

suit this purpose. Their pertinent properties are found
in [18].

To perform a position measurement at a point, D ≡
(r, θ, φ), we encode the coordinates of D in the values

z1 =

√
r

λ
cos

(
θ

2

)
e−i

φ
2 eiγ

z2 =

√
r

λ
sin

(
θ

2

)
ei
φ
2 eiγ .

(19)

of a coherent state |z〉. Hereafter we adopt the notation
R := r

λ = z̄αzα, for the dimensionless radius. The en-
coding is such that the expectation values, 〈z|x̂i|z〉 =
λ z†σiz, reproduce the coordinates of D:

x1 ≡ 〈z|x̂1|z〉 = r sin θ cosφ

x2 ≡ 〈z|x̂2|z〉 = r sin θ sinφ

x3 ≡ 〈z|x̂3|z〉 = r cos θ.

Notably, the global phase γ drops out of each of the above
(as it must), and so constitutes an additional degree of
freedom when choosing the zi.

This notion of position exists on the level of configu-
ration space, Hc; to lift it to the quantum Hilbert space,
Hq, we introduce corresponding states |z1, z2, n1, n2)ph,
defined

|z1, z2, n1, n2)ph := Q̂
1√

4πλ2r̂
|z〉〈n1, n2| (20)
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where the inverse square-root is included for normali-
sation and the projection Q̂ must be applied to obtain
physical states.

We now define position measurement using a Positive-
Operator-Valued Measure (POVM). The relevant opera-
tors are

Π̂z :=
∑
n1,n2

|z1, z2, n1, n2)ph ph(z1, z2, n1, n2|, (21)

which clearly satisfy the requirements of a POVM: they
are Hermitian, positive semi-definite (but not orthogo-
nal), and satisfy a completeness relation (readily deduced
from the completeness of coherent states),∫

d4z

π2
Π̂z = Q̂ = 1q, (22)

where the measure d4z, sometimes written dz̄1dz1dz̄2dz2,
is shorthand for dRe(z1)d Im(z1)dRe(z2)d Im(z2).

Finally, the probability density function (PDF) asso-
ciated with measuring a particle having initial density
matrix ρ at the point D is given by the usual Born rule,

P (D) = Trq

(
Π̂zρ

)
. (23)

The subscript on Trq emphasises that the trace is taken
over Hq.

Of particular interest to us, the special case of an
initially-pure state ρ = |ψ)(ψ|, reduces (23) to

P (D) = 4πλ2 〈z|ψr̂ψ†|z〉 . (24)

As expected, P (D) is independent of the global phase
γ in (19), and furthermore the normalisation of |ψ) im-
plies the normalisation of the probability distribution:

1 = (ψ|ψ) = 4πλ2 Trc

(
ψ†r̂ψ

)
= 4πλ2

∫
d4z

π2
〈z|ψr̂ψ†|z〉 .

Of course, the normalised state ψ has dimension
length−3/2, so P (D) is dimensionless. We may there-
fore wonder how it relates to a spatial probability density
with dimension length−3. For this we rewrite the integra-
tion measure in terms of explicit coordinates (r, θ, φ, γ)
(computing the relevant Jacobian from (19)),

d4z

π2
=
r sin θ

8π2λ2
drdθdφdγ,

whereupon∫
d4z

π2
P (D) =

∫
r2 sin θ drdθdφ

〈z|ψr̂ψ†|z〉
r

,

giving ultimately the interpretation of

1

4πrλ2
P (D) ≡ 〈z|ψr̂ψ

†|z〉
r

(25)

as the spatial density.

E. Coordinate representation

We have yet to formulate the analogues of wavefunc-
tions — that is, coordinate representations of states. We
saw in section IID how coherent states encode positions.
If we could lift this position encoding from coherent states
|z〉 ∈ Hc to corresponding states |z) ∈ Hq, we could de-
fine the coordinate representation of a state |ψ) ∈ Hq

by ψ(z) := (z|ψ) , resembling the approach of commuta-
tive quantum mechanics. The states |z) should also be
complete to readily obtain square-integrability of ψ(z).

In section IID, we already encountered one possi-
ble way of “lifting” coherent states to Hq, namely the
states |z1, z2, n1, n2)ph of (20). Indeed, these states pos-
sess some desiderata we now seek to fulfil — they lift
the coordinate encoding to Hq, and satisfy complete-
ness relation (22) — but they carry an undesired ad-
ditional dependence on n1 and n2. Eliminating these la-
bels will force us to adopt a non-trivial product between
coordinate-represented states (which must of course be
non-commutative).

To this end, first rewrite the trace in (21) instead as
an integral running over coherent states, obtaining

Π̂z =

∫
d4w

π2
|z,w)ph ph(z,w|, (26)

for states

|z,w)ph ≡ |z1, z2, w1, w2)ph := Q̂
1√

4πλ2r̂
|z〉〈w1, w2| .

Next, we can shift the integral in (26) with the substi-
tution v := w − z, and rewrite the result in terms of
translation operators of the form evα∂zα . This simplifies
to Π̂z = |z) ?̄ (z| , where the states |z) ≡ |z, z)ph are ex-
actly those we seek, and where we have introduced the
“star-product”,

?̄ :=

∫
d4v

π2
e−v̄αvαev̄α

←−
∂ z̄α evα

−→
∂zα = exp

[←−
∂ z̄α
−→
∂ zα

]
.

In fact, this product is exactly the conjugate (treat-
ing differential operators as Wirtinger derivatives [19])
of the well-known Voros product (2.16 in [20]), ? :=

exp
[←−
∂ zα
−→
∂ z̄α

]
, as suggested by the overbar. In this no-

tation, the completeness relation of (22) becomes∫
d4z

π2
|z) ?̄ (z| = 1q. (27)

In summary, we define the coordinate representation
of a state |ψ) by

ψ(z) := (z|ψ) = 〈z|
√

4πλ2r̂ ψ|z〉 . (28)

Though seemingly a function of two complex variables,
by parameterising z1 and z2 as in (19) we find that ψ(z) is
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independent of γ, making it a function on C2/U(1) ∼= R3,
as expected. The expected square-integrability of the
coordinate representation is automatically implied by the
finiteness of the operator norm, ‖ψ‖; we simply invoke
(27) to insert the identity in the operator inner product:

(ψ|ψ) =

∫
d4z

π2
(ψ|z) ?̄ (z|ψ) =

∫
d4z

π2
ψ̄(z) ?̄ ψ(z) <∞.

Whenever we care about the radial dependence of the
coordinate representation, we must account for the factor
of
√
r̂ in (28) coming from our weighted inner product. In

such cases, we can normalise ψ with a factor of 1√
4πλ2r̂

before computing the coordinate representation, which
then reduces to the simple expectation value, ψ(z) =
〈z|ψ|z〉 , called the symbol of ψ.

F. Position measurement as weak measurement

Pittaway et al. [1] give a detailed account of how it
is possible to interpret our POVM framework for posi-
tion measurement as a form of weak measurement. It is
worth briefly mentioning here (deferring to the reference
for details), mainly because it preempts the quantum-
to-classical transition presented in section IV, but also
because it highlights how position measurement is dis-
tinguished from other kinds of measurement within our
formalism.

Recall (8), which decomposed our state space as

Hq =
⊕
n∈N
Fn ⊗F∗n ⊂ Hc ⊗H∗c .

Now position observables X̂i act via left-multiplication
(as per (12)), and thereby only act on one sector, Hc, of
Hq. Consequently, position measurements are local mea-
surements, only capable of providing information on this
sector. The other sector, H∗c , acts as an environment (in
the sense of decoherence; see [21], for instance), provid-
ing additional degrees of freedom that remain unprobed
by position measurements.

That is to say, upon performing a local measurement
such as a position measurement, the environmental de-
grees of freedom can be traced out (by partial trace
over the unobserved sector, H∗c). The result is a post-
measurement reduced density matrix, which is generally
an improper mixed state. This entirely mirrors the mech-
anism of decoherence.

The parallel is noteworthy because decoherence is well-
understood to generally give rise to suppression of in-
terference terms and thereby to emergent classical be-
haviour [21].

III. FREE PARTICLE SOLUTIONS

Analogous to the commutative case, the time indepen-
dent free particle Schrödinger equation reads

Ĥ |ψ) = − ~2

2m
∆̂ |ψ) = E |ψ) . (29)

As in the commutative case, we can obtain both plane
wave and radial (spherical wave) solutions. Both forms
are needed in our investigation, so we consider each in
turn. The discussion of this section adds detail to, but
otherwise mimics, that in [10].

A. Non-commutative plane waves

A natural candidate for the form of a wave solution is

|p) ≡ |k) := exp

[
i

~
p · x̂

]
= eik·x̂, (30)

up to appropriate normalisation (of which we defer dis-
cussion to section III B), and where k = p/~ is the de
Broglie wave-vector.

Since the x̂i represent su(2) elements (and since SU(2)
is simply-connected [15]), such plane waves are represen-
tations of SU(2) group elements. Moreover, the expo-
nential map exp: su(2) → SU(2) is surjective, (because
SU(2) is connected and compact — see, for instance,
corollary 11.10 in [15]), so that every (represented) SU(2)
element assumes the form of (30). A consequence is that
composing plane waves produces another plane wave:

eik1·x̂eik2·x̂ = eik3·x̂.

We can compute the momentum k3 of this new plane
wave using the well-known Baker–Campbell–Hausdorff
(BCH) expansion for log

(
eXeY

)
, which has a simple

closed form in the case of SU(2) (attributed to Ro-
drigues [22]). For this, first rewrite the plane waves in
terms of dimensionless quantities κi as

eiki·x̂ ≡ eiκi k̂i· x̂λ , where κi := λ‖ki‖, (31)

for unit vectors k̂i. Then solve for κ3 and k̂3 using

cosκ3 = cosκ1 cosκ2 − k̂1 · k̂2 sinκ1 sinκ2,

k̂3 =
1

sinκ3

(
k̂1 sinκ1 cosκ2 + k̂2 sinκ2 cosκ1

−k̂1 × k̂2 sinκ1 sinκ2

)
.

(32)

Since the Pauli matrices share commutation relations
with the operators x̂i/λ, an analogous composition rule
holds for (unrepresented) SU(2) group elements written
as exponentials in this way.
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Plane waves transform simply under the action of a ro-
tation operator. Let R ≡ Rφ(û) ∈ SO(3) be the rotation
matrix with angle φ and axis û, and let

Π(R) := exp

[
− i
~
φû · L̂

]
be its representation on Hq. For convenience define
Ĵi ≡ 1

2λ x̂i, and note that [x̂i, Ĵj ] = iεijkx̂k = [Ĵi, Ĵj ],
implying that x̂ is a vector operator with respect to
the Ĵi, from which it immediately follows by the Baker-
Hausdorff lemma (see section 5.1.2 of [23], for instance)
that

e−iφû·Ĵ x̂i e
iφû·Ĵ = [R−φ(û)]ij x̂j =

[
RT x̂

]
i
.

Combining the above with definition (14), L̂i := ad~x̂i/2λ,
it is then easily seen that

Π(R) |k) = exp
[
ad−iφû·Ĵ

]
eik·x̂

= Adexp[−iφû·Ĵ]
(
eik·x̂

)
= |Rk) ,

(33)

where we have used eadX = AdeX (see 3.34 in Hall [15],
for instance).

For the purposes of computing the plane wave energy,
we use the above rotation law together with the rota-
tional invariance of the Schrödinger equation, (29), to
focus on the case k = kẑ,

|kẑ) = eikx̂3 = eikλ(a
†
1a1−a†2a2) ≡ eikλ(n̂1−n̂2). (34)

Now the energy is readily computed directly from the
commutation relations f(n̂j)aj = ajf(n̂j−1) (specifically
with f(n̂1, n̂2) = eikλ(n̂1−n̂2)) and aja

†
j = n̂j + 1, as such:

Ĥ |kẑ) =
~2

2λmr̂

[
a†α,
[
aα, e

ikλ(n̂1−n̂2)
]]

=
2~2

mλ2
sin2

(
kλ

2

)
|kẑ) .

(35)

The non-commutativity has clearly affected the usual dis-
persion relation, in particular introducing an energy up-
per bound Emax = 2~2

mλ2 . This is consistent with the re-
striction k ∈ [0, π/λ) on k required for the states in (34)
to be linearly independent.

B. Plane wave normalisation

We take some time to motivate our choice of plane wave
normalisation. Firstly, note that, being eigenstates of a
Hermitian operator (as per (35)), plane waves with dif-
ferent energies are necessarily orthogonal. Equivalently,

plane waves |k1) and |k2) with non-trivial overlap must
satisfy

sin2

(
k1λ

2

)
= sin2

(
k2λ

2

)
⇐⇒ k1 = ±k2 +m

2π

λ
, for some m ∈ Z,

which is at least consistent with the requirement that
wavenumbers be restricted to the interval [0, π/λ) for lin-
ear independence.

To aid in selecting an appropriate normalisation con-
dition, we explicitly compute the overlap of two plane
waves. By (5), together with (30), we have

(k1|k2) = 4πλ3 Trc

(
e−ik1·x̂(n̂+ 1) eik2·x̂

)
.

Now plane waves commute with n̂ (as each coordinate
does), and we can compose the plane waves using (32) to
obtain

(k1|k2) = 4πλ3
∑
j,m

(2j + 1) 〈j,m|eik3·x̂|j,m〉 ,

for some new wave-vector k3. Here, |j,m〉 is a simultane-
ous eigenket of r̂2 and x̂3, as in (10). In this expression
we recognise the character of the jth SU(2) irrep, usually
written

χj(k3) ≡ χj(α, β, γ) :=
∑
m

Dj
mm(α, β, γ),

in terms of the Wigner-D matrix element,

Dj
m′,m(α, β, γ) := 〈j,m′|eiα

x̂3
λ eiβ

x̂2
λ eiγ

x̂3
λ |j,m〉 .

This usual parameterisation uses Euler angles (α, β, γ),
relying on the decomposition eik3·x̂ ≡ eiα

x̂3
λ eiβ

x̂2
λ eiγ

x̂3
λ ,

of our plane wave. Importantly, characters are invariant
on conjugacy classes, due to the cyclic property of the
trace. In particular, χj(k3) depends only on the magni-
tude k3, as we may conjugate with another plane wave to
arbitrarily rotate the wave-vector direction (as in (33))
without affecting the character. Thus, we will opt to ro-
tate k3 to lie entirely along the x̂2-axis, whence we can
take α = γ = 0 and β = κ3 := λk3. Finally, we can
invoke the completeness relation for characters (equation
3.95 in [14]) to write

(k1|k2) = 4πλ3 δ(κ3), (36)

since χj(0) is the dimension of the jth SU(2) irrep, 2j+1.
We confirm that (36) is sensible by determining the

conditions leading to non-zero overlap. The overlap is
clearly non-zero exactly when κ3 = 0, whereupon the
composition

(
eik1·x̂

)†
eik2·x̂ of our original plane waves

gives the identity operator 1c ≡ e0 k̂3· x̂λ . Because our
SU(2) representation is faithful, this happens precisely
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when the corresponding (unrepresented) SU(2) group el-
ements compose to the identity matrix,(

eiλk1·σ̂
)†
eiλk2·σ̂ = I,

i.e. when the unrepresented group elements are equal.
This translates into a slightly non-trivial condition on k1

and k2, since the exponential map exp: su(2) → SU(2)
is not injective [15]. To make this more precise, we first
expand both exponentials (using (A1) from appendix A),

cos(λk1)I+i sin(λk1)k̂1 ·σ̂ = cos(λk2)I+i sin(λk2)k̂2 ·σ̂,

then note that the matrices {I, σ̂1, σ̂2, σ̂3} form a basis
for M2,2(C), and so are linearly independent, whereby
we can equate coefficients,

cos(λk1) = cos(λk2),

sin(λk1)k̂1 = sin(λk2)k̂2.

It follows that (k1|k2) is non-zero exactly when k1±k2 ∈
2π
λ Z, and either

1. k1 ∈ π
λZ, or

2. k̂1 = ∓k̂2.

If we restrict k1, k2 ∈ [0, π/λ) then these cases collapse
into the much simpler (expected) single condition that
k1 = k2.

The conclusion is that we may simply choose

N =
1√

4πλ3
, (37)

to normalise our plane waves, so that the normalisation
condition reads

(k1|k2) = δ(κ3), (38)

where cosκ3 is given by (32). This normalisation condi-
tion, while unconventional, is both convenient and sen-
sible, as shown. It also gives |k) the correct dimensions
of length−3/2, as per the discussion of dimensions at the
end of section IID.

C. Commutative spherical waves

Spherical waves play an important role in the pinhole
interference setup which we study in section IV. As such,
before we treat the non-commutative free particle spher-
ical wave solutions, it bears revising the standard com-
mutative spherical waves for later comparison. These are
derived in many standard introductory texts; see for in-
stance sections 3.3 and 3.4 of Abers [23]. They have the
general form

ψklm(r, θ, φ) = Rkl(r)Y
m
l (θ, φ),

labelled by momentum, k, and angular momentum quan-
tum numbers l ∈ N andm ∈ [−l, l]∩N. The wavefunction
normalisation implies separate normalisation conditions
on the angular and radial components, expressed respec-
tively as

∫
|Y ml (θ, φ)|2 dΩ = 1, and

∫ ∞
0

|Rkl(r)|2 r2dr = 1.

(39)
For such solutions, the Schrödinger equation separates
into angular- and radial equations. The former ad-
mits the standard spherical harmonic solutions, which
we omit. The latter admits solutions of the form

Rkl(r) = AgJ,l(kr) +BgY,l(kr),

where gJ,l and gY,l denote respectively the order-l spher-
ical Bessel- and Neumann functions, and where the coef-
ficients A and B are given by boundary conditions. The
Neumann functions are only valid away from the origin,
but this regime is relevant for our calculation. Indeed,
we will use the large-r form of the radial solutions (see
equation 3.132 of [23], for instance),

Rkl(r) = N
1

r
e±ikr, (40)

where N is a normalisation constant. This asymp-
totic form follows from the large-r limiting behaviour of
the spherical Hankel functions of the first kind, gH,l =
gJ,l+ igY,l; see section A.2.3 of [23] for a derivation. This
approach will inform how we derive the asymptotic form
of the analogous non-commutative spherical waves in sec-
tion IIID below.

Concerning normalisation, there are two important
observations to make. Firstly, it is clear from (39)
that the radial part of any wavefunction has dimensions
of length−3/2; therefore, N should have dimensions of
length−1/2. Secondly, the integral as given in (39) di-
verges if we insert the asymptotic form of Rk,l,

∫ ∞
0

∣∣∣∣N 1

r
e±ikr

∣∣∣∣2 r2dr = |N |2
∫ ∞

0

dr 6<∞.

We address both observations by regularising the diver-
gent integral by bounding our system within a large finite
volume V , say a sphere, and taking the radial integral
only to the boundary of the volume, ∼ V 1/3. Then N
is proportional to V −1/6, which introduces the missing
dimensionality. We will not bother to calculate the ex-
act dimensionless proportionality constant, as it is nei-
ther very meaningful ((40) is merely an approximation
for large r) nor necessary for our discussion.
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D. Non-commutative spherical waves

The free particle angular momentum eigenstates are
shown in [12] to have the form

|k, l,m) :=
∑

(mi,ni)∈Λ

(a†1)m1(a†2)m2

m1!m2!
g(n̂, k)

(a1)n1(−a2)n2

n1!n2!
.

(41)
Here, k is the momentum, l ∈ N and m ∈ Z ∩ [−l, l] are
fixed indices, and the summation runs over the set

Λ :=
{

(m1,m2, n1, n2) ∈ N4
∣∣ m1 +m2 = n1 + n2 = l,

m1 −m2 − n1 + n2 = 2m
}
.

(42)

Inserting this form into (29) yields a difference equation
for g which admits two linearly independent solutions
(derived in section 7 of [9]) which have the forms

gJ,l(n, k) =

[ √
π sinl+1 κ

2l+1 Γ
(
3
2

+ l
)] cosn κ

× 2F1

(
1− n

2
,−n

2
,

3

2
+ l,− tan2 κ

)
,

(43)

for n ≥ 0, and

gY,l(n, k) =

[
−
√
π(−2)l cosl+1 κ

tanl κΓ
(
1
2
− l
) ] n! cosn κ

Γ(2 + 2l + n)

× 2F1

(
−1− l − n

2
,−l − n

2
,

1

2
− l,− tan2 κ

)
,

(44)
for n > 0, respectively; here the functions 2F1 are the
hypergeometric functions, and κ := λk is a dimensionless
quantity. These solutions are the non-commutative ana-
logues of the spherical Bessel- and Neumann functions,
respectively. Like its commutative counterpart, the latter
solution, gY,l, is only valid away from the origin, captured
by the restriction n > 0. Away from the origin, we can
linearly combine the solutions as

gH,l := gJ,l + igY,l,

obtaining the non-commutative analogues for the Hankel
functions of the first kind.

We are interested in the asymptotic behaviour of the
spherical waves. Following the approach in section D
of [10], we first consider the asymptotic behaviour of the
radial function, g. This involves expressing gY,l(n, k) and
gJ,l(n, k) in terms of Jacobi polynomials, using identities
15.3.21 and 15.4.6 from [24], then expanding these poly-
nomials for large n (corresponding to large radius) using
theorem 8.21.8 from [25]. The result, as given in [10], is
that for large n,

gJ,l(n, k) ≈ sin((n− l − 1)κ− lπ/2)

nl+1
, and

gY,l(n, k) ≈ −cos((n− l − 1)κ− lπ/2)

nl+1
,

whence the linear combination gH,l behaves asymptoti-
cally like an outgoing radial wave:

gH,l(n, k) ≈ ei(n+l+1)κ

(in)l+1
. (45)

Compared to its commutative analogue, there is an ad-
ditional factor of n−l in this expression. However, this is
compensated by the remaining radial dependence in (the
other factors of) the spherical wave. To see this, consider
the (asymptotic) symbol (see section II E),

〈z|k, l,m|z〉 =
∑

(mi,ni)∈Λ

z̄m1
1 z̄m2

2 zn1
1 (−z2)n2

m1!m2!n1!n2!
〈z|gH,l(n̂, k)|z〉

≈ Rl 〈z|e
i(n̂+l+1)κ

(in̂)l+1
|z〉 eimφ

×
∑

(mi,ni)∈Λ

(−1)n2

m1!m2!n1!n2!

× cosm1+n1

(
θ

2

)
sinm2+n2

(
θ

2

)
,

of the state |k, l,m). The radial dependence is shared
between the first two factors, so we should compute the
remaining matrix element. This calculation ends up be-
ing somewhat technical, so we delegate the details to ap-
pendix B 3. There it is shown that, to leading order in
the large-R expansion,

〈z|e
i(n̂+l+1)κ

(in̂)l+1
|z〉 ∼ 1

(iR)l+1
eR(cosκ−1)+iR sinκ, (46)

cancelling the factor of Rl from the angular part of the
spherical wave symbol, and leaving an overall radial de-
pendence of 1/R.

IV. PINHOLE INTERFERENCE

Consider the pinhole interference configuration in fig-
ure 1. Plane waves incident on a barrier (which is
oriented normal to the direction of propagation) pass
through a pair of pinholes, resulting in spherical wave
fronts that interfere before being detected on a screen.
We choose the barrier to lie in the plane x = 0, with the
pinhole apertures at z = ±d. A point D = (L, yD, zD)
on the screen is then separated from each of the respec-
tive pinholes by distances

r± := dist (±dẑ,D) ≡
√
L2 + y2

D + (zD ∓ d)2. (47)

Due to symmetry, the spherical waves in our setup will
have equal energies, and thus (given the usual non-
relativistic dispersion relation) equal wavenumber mag-
nitudes, k. Of course, spherical waves emanate radially
outward in all directions, but we will perform calculations
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2d

L

FIG. 1: Pinhole interference configuration

within the large-separation approximation, wherein L is
assumed to far exceed both the slit separation, 2d, and
the displacements, zD and yD, of the measurement point.
Under this approximation, we will treat the spherical
waves incident on the screen instead as (appropriately
scaled) plane waves with momenta normal to their wave-
fronts. The appropriate wavenumber vectors are then

k± ≡ k k̂± =
k

r±

 L
yD

zD ∓ d

 , (48)

directed from each pinhole towards D. We will see this
approximation in effect in the coming sections, both for
the commutative and non-commutative calculations.

Note also that, since the origin is co-linear with the
pinholes, k̂± and D̂ are all co-planar. This permits us to
illustrate the geometry of the setup within an appropriate
planar slice; such is given by figure 2, whose angles we
will reference in the coming calculations.

The main result of this section is derived in subsec-
tion IVB, where we treat this pinhole configuration in
the fuzzy-sphere NCQM formalism. However, in subsec-
tion IVA below, we first treat the setup using ordinary
commutative quantum mechanics. This is useful for com-
parison with the non-commutative result — indeed, the
commutative result should be viewed as a special case of
the non-commutative one, and must be entirely recov-
ered within the commutative limit, λ→ 0. We check this
limit in section VB.

A. Commutative interference calculation

The wavefunction incident on the screen is a superpo-
sition of spherical waves emanating from each pinhole.

We invoke the large-separation assumption (in particu-
lar, that L� 2d) to use the large-r form of each spherical
wave, as per (40). Then the wavefunction is

ψ(D) =
1√

8π V 1/6

(
1

r+
eikr+ +

1

r−
eikr−

)
,

where V is the system’s volume, as per the discussion
of section III C. We choose the simplest possible angular
dependence for our spherical waves, namely the spher-
ical harmonic Y 0

0 (θ, φ) = 1/
√

4π. A more complicated
angular dependence would only serve to apply an addi-
tional modulation to the base interference pattern — we
therefore simplify the problem by ignoring angular mo-
mentum. Crucially, the large-separation assumption fur-
ther permits us to approximate the spherical waves with
(appropriately-attenuated) plane waves,

ψ(D) =
1√

8π V 1/6

(
1

r+
eik+·D +

1

r−
eik−·D

)
. (49)

We should justify this by showing that the plane waves
capture the correct radial behaviour within our approx-
imation. To this end, consider the triangle depicted on
figure 2 with vertices 0, D and dẑ; its area can be ex-
pressed either as 1

2d
√
L2 + y2

D or as 1
2r+r sinα, whence

sinα =
d
√
L2 + y2

D

rr+
≈ d

L
,

up to first order (in all of d/L, yD/L, zD/L � 1). Next,
applying the cosine rule, d2 = r2

+ + r2 − 2rr+ cosα, to
the same triangle, we get

r+ = r cosα± r

√(
d

r

)2

− sin2 α ≈ r cosα, (50)

since d/r ≈ d/L also, so the square root vanishes to lead-
ing order. By identical reasoning, we also have r− ≈

D

k̂+

k̂−

D̂

d

d

α

β

FIG. 2: Planar slice of pinhole configuration along plane
defined by pinholes and detection point
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r cosβ, and so k+ · D = ‖k+‖‖D‖ cosα = rk cosα ≈
kr+, and similarly k− ·D ≈ kr−. This justifies the parax-
ial approximation of (49).

With this simplified wavefunction, the measurement
probability density, Pcomm(D) = |ψ(D)|2, is (up to di-
mensionless normalisation prefactors)

Pcomm(D) =
1

4πV 1/3 r+r−

[
2d2

r+r−
+ cos(α+ β)

+ cos(rk(cosα− cosβ))

]
.

(51)

B. Non-commutative interference calculation

Much as in the commutative calculation, we want the
state |ψ) arriving at D to have the form of a superposi-
tion of spherical waves emanating from each pinhole. In
terms of symbols,

〈z|ψ|z〉 = M
[ 〈
z+
∣∣k, 0, 0∣∣z+

〉
+
〈
z−
∣∣k, 0, 0∣∣z−〉] ,

where the z± ∈ C2 encode the coordinates, D± := D ∓
dẑ, of D (as per (19)) relative to the respective pinholes,
and whereM is an overall normalisation. We have clearly
again chosen l = 0 for simplicity, and we will again focus
on the large-separation asymptotic behaviour,

〈z|ψ|z〉 ≈ M

i

[
1

R+
eR+(cosκ−1)+iR+ sinκ

+
1

R−
eR−(cosκ−1)+iR− sinκ

]
,

(52)

as per (46), where, of course, we have defined the dimen-
sionless R± := r±

λ = z̄±α z
±
α , as well as κ := k/λ, as in sec-

tion IIID. We want to approximate the spherical waves
with (scaled) plane waves in analogy with the paraxial
approximation of (49). Hence, consider the symbol of a
plane wave (with respect to the origin),

〈z|eik±·x̂|z〉 = 〈z|g(k±)z〉

= exp

[
−1

2

(
‖z‖2 + ‖g(k±)z‖2

)
+ z†(cosκ+ i sinκ k̂± · σ̂)z

]
,

(53)

where we have invoked (A5), together with the co-
herent state overlap (a special case of (B5)). Now
g(k±) ∈ SU(2), so ‖g(k±)z‖2 = ‖z‖2 = R. Moreover,
z†(k̂± · σ̂)z = k̂± ·D/λ, by (19), and k̂± ·D ≈ r±, as in
the commutative case, so

〈z|eik±·x̂|z〉 ≈ eR(cosκ−1)+iR± sinκ. (54)

This closely resembles one of the terms in (52), and by
inspection we can see that the following state will have
the desired symbol,

|ψ) =
M

i
[η+ |k+) + η− |k−)] , (55)

for real dimensionless constants

η± :=
1

R±
exp[(R± −R)(cosκ− 1)].

While (55) and (49) appear superficially to differ in form,
we should note that η± ≈ 1/R± for large L (or small κ).
The plane waves |k±) each come with normalisation fac-
tors N = 1√

4πλ3
(as per (37)). As in the commutative

calculation, we are not much concerned with overall di-
mensionless normalisation factors; that said, we should
include a factor of

√
λ

V 1/3 for comparison with the com-
mutative result, given that these values define the length
scales of the problem. For this reason we choose the sim-
plest sensible overall normalisation, M := i

√
λ

2V 1/3 , for
the sum.

Now the probability of observing our state at D is
calculated using (24) as

P (D) =
1

V 1/3

[
η2

+ + η2
−

2
〈z|r̂|z〉

+ η+η−Re 〈z|eik+·x̂r̂e−ik−·x̂|z〉
]
.

(56)

The first remaining matrix element, 〈z|r̂|z〉, is easily
computed using the machinery of appendix B 2, specifi-
cally (B5), whereby

〈z|r̂|z〉 = λ 〈z|n̂+ 1|z〉 = λ(R+ 1).

For the remaining matrix element — let us call it E
for brevity — we first invoke (A5) to act each of the
plane waves on its adjacent coherent state (this simply
produces two new coherent states, as explained in ap-
pendix A),

E = λ 〈g(−k+)z|n̂+ 1|g(−k−)z〉 ,

and we are now again in a position to invoke (B5),
whereby

E = λ exp

[
−1

2

(
‖g(−k+)z‖2 + ‖g(−k−)z‖2

)
+K

]
× (K + 1)

= λeK−R(K + 1),

where the constant K := (g(−k+)z)†g(−k−)z is defined
as in appendix B 2. It now only remains to compute K
explicitly. Expanding its definition,

K = z†eiλk+·σ̂e−iλk−·σ̂z, (57)
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we express the product eiλk+·σ̂e−iλk−·σ̂ of SU(2) group
elements in the form eiκ3k̂3·σ̂ = cosκ3 + i k̂3 · σ̂ sinκ3,
which is always possible, as explained in section IIIA
and appendix A. Leaving k3 and κ3 undetermined for
the moment, we can write K as

K = R cosκ3 + i sinκ3

(
z†σ̂iz

)
[k̂3]i

= R
(

cosκ3 + i D̂ · k̂3 sinκ3

)
,

(58)

much as we did above in (53). Finally, the BCH formula,
(32), gives explicit formulae for cosκ3 and k̂3 sinκ3, into
which we substitute

κ1 = κ2 ≡ κ = λk,

k̂1 ≡ k̂+ =
1√

L2 + y2
D + (zD − d)2

 L
yD

zD − d

 ,
k̂2 ≡ −k̂− =

−1√
L2 + y2

D + (zD + d)2

 L
yD

zD + d

 .
One of the resulting terms contains the triple product
D̂ · (k̂+ × k̂−), but this vanishes since the three vectors
in question are co-planar, as depicted in figure 2. We are
left with

K = R cos2 κ+R sin2 κ cos(α+ β)

+ iR sinκ cosκ(cosα− cosβ),
(59)

where we have written each scalar product appearing in
(32) in terms of the angles α and β from figure 2. For
brevity, let us introduce two more constants,

A := ReK = R
(
cos2 κ+ cos(α+ β) sin2 κ

)
,

B := ImK = R sinκ cosκ(cosα− cosβ).
(60)

Finally, inserting everything into (56), we obtain our
probability distribution,

P (D) =
λ

V 1/3

[
η2

+ + η2
−

2
(R+ 1)

+ η+η−e
A−R((A+ 1) cosB −B sinB)

]
.

(61)

V. DISCUSSION

In this section we discuss our result, (61), and con-
sider various limiting cases. Specifically, we confirm that
in the commutative limit, λ → 0, (61) reduces to the
commutative result, (51). Following that, we consider
the classical limit, deriving the specific conditions under
which we observe a quantum-to-classical transition, and
finally we derive how (61) is affected by allowing and en-
tire collection of N particles to pass through the pinhole
setup at once.

A. Qualitative discussion of form

It is worth first making a few cursory remarks on the
key features of our distribution. Qualitatively, the in-
dividual sub-expressions of (61) perform the following
functions,

P (D) ∼
η2

+ + η2
−

2
(R+ 1)︸ ︷︷ ︸

bimodal shaping
function

+ η+η−e
A−R︸ ︷︷ ︸

interference
suppression

× ((A+ 1) cosB −B sinB)︸ ︷︷ ︸
interference terms

.

(62)

Notably, eA−R indeed always acts to suppress the inter-
ference, given that A − R = R sin2 κ (cos(α+ β) − 1) is
manifestly always nonpostive, since κ ∈ [0, π).

For understanding qualitative features, it is also help-
ful to examine a plot. Figure 3 shows surface plots of
(61) for some arbitrarily-chosen parameter values, along
with the yD = 0 traces. Instead of P (D), we actu-
ally plot 1

4πλ2rP (D), since this is the spatial probabil-
ity density corresponding to P (D), as explained in sec-
tion IID; this helps with later qualitative comparison
with the commutative limit. The plots clearly exhibit the
expected bimodal distribution superimposed with inter-
ference. Moreover, the interference is evidently stronger
for one set of parameters than for the other, and increased
suppression is correlated with increased localisation of
the distribution.

More importantly, the plots also suggest that the dis-
tribution is reflection-symmetric. Indeed, we can eas-
ily algebraically verify its symmetry under zD ←→ −zD
— each of the following quantities are manifestly invari-
ant under this replacement: R; cos(α+ β), and hence
eA; cosB (as B accrues a minus sign under the reflec-
tion); and finally η+η− and η2

±. This would hardly be
remarkable, were it not for the fact that the double-slit
interference pattern in the 2D Moyal plane is asymmetric
under reflection [1]. The restoration of reflection symme-
try in our analogous setup in 3D fuzzy space confirms
the expectations of [1] that the reflection-asymmetry in
the Moyal plane interference pattern arises only because
the Heisenberg-Moyal commutation relations break ro-
tational symmetry (as explained in section IIA). The
distribution is likewise (unsurprisingly) symmetric under
the reflection yD ←→ −yD, and thus also under 180◦

rotation about the x-axis (the composition of these two
reflections).

B. Commutative limit

We now take the commutative limit λ→ 0+, and show
that (61) indeed reproduces (51), as it must. There is ac-
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(a) k = 0.22 (b) k = 0.44

FIG. 3: Surface plots of 1
4πλ2rP (D), with yD = 0 traces, for different values of k. Other parameters are
L = d = 70, λ = 0.1. All lengths are in arbitrary units.

tually a small subtlety which we have already foreshad-
owed. That is, since Pcomm(D) represents a spatial den-
sity (with dimensions of length−3), and P (D) does not
(being dimensionless), we should instead expect to obtain
Pcomm(D) as the limit

lim
λ→0+

1

4πrλ2
P (D),

rather than simply limλ→0+ P (D), since (as shown in
section IID) 1

4πrλ2P (D) is precisely the spatial density
corresponding to P (D).

Now, as we send λ → 0+, B clearly obtains a finite
non-zero limit, which we call B0, whereas A diverges like
R ≡ r/λ. But the divergence of A is cancelled in the ex-
pression A − R, which altogether vanishes, meaning the
interference suppression vanishes in this limit, eA−R → 1.
Finally, the numerator, R±η±, of η± tends to 1, so that
η±/λ → 1/r±. Using the above results (invoking conti-
nuity wherever applicable), we compute the commutative
limit

lim
λ→0

1

4πrλ2
P (D)

=
1

4πV 1/3 r+r−

[
r2
+ + r2

−
2r+r−

+ cos(rk(cosα− cosβ))

]
= Pcomm(D),

as required.
Having established that we have the correct commu-

tative limit, we pause to compare its behaviour qualita-
tively with that of P (D). To this end, we plot Pcomm(D)
in figure 4 for the same parameter values (except λ, of
course) as in figure 3. Comparing figures 4 and 3, the
low-momentum (k = 0.22) distributions are unsurpris-
ingly similar, but where in the non-commutative distri-
bution of figure 3 we observe a suppression of interfer-
ence for higher momentum (k = 0.44), the commutative
distribution of figure 4 actually exhibits completely the
opposite behaviour, showing more pronounced interfer-
ence at this higher k. This shows that the momentum-
dependent quantum-to-classical transition that we ob-
serve is a uniquely non-commutative phenomenon. In
the next section, we will consider this transition more
carefully.



13

(a) k = 0.22 (b) k = 0.44

FIG. 4: Surface plots of Pcomm(D), with yD = 0 traces, for the same values of k, L, and d as in figure 3.

C. Classical behaviour and quantum-to-classical
transition

We recognise the “classical-regime” of our distribution
to consist of any parameter combinations that result in
strong interference suppression, leaving behind the un-
derlying bimodal distribution that one would expect to
emerge classically from our pinhole setup. An example of
a distribution in this regime is shown in figure 5. Look-
ing at figure 3, or even the double slit interference in the
Moyal plane [1], we might expect this regime to emerge
in a large momentum limit. However, recall that, like the
plane wave energy of (35), the probability distribution of
(61) is periodic in k with period 2π/λ; such periodicity
does not occur in the Moyal plane [1]. The upshot is that
we do not obtain a well-defined limit by sending k →∞,
so it is not apparent what a large momentum limit should
entail. Indeed, we show that suppression can occur even
for arbitrarily small momenta.

Recall from (62) that the factor responsible for inter-
ference suppression is

eA−R = exp
[
R sin2 κ(cos(α+ β)− 1)

]
.

First we write cos(α+ β) in terms of the length scales
in the problem. Applying the cosine rule to figure 2, we

obtain

cos(α+ β) =
r2 − d2√

(r2 + d2)2 − 4z2
Dd

2
≈ 1− 2d2

r2
,

to first order in each of d/r � 1 and zD/r � 1. Suppose

FIG. 5: Surface plot of P (D) with k = 1 (and L, d and
λ as in figure 3), exhibiting classical-regime behaviour of
being bimodal and localised with no visible interference.
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for the moment that λk/2 � 1, as would be the case at
low momentum. Expanding the exponent,

A−R = λrk2(cos(α+ β)− 1) +O(λ3k3)

≈ −2λk2d2

r

to leading order, we identify the condition for strong sup-
pression as 2λk2d2/r � 1. It is helpful to rewrite this
condition in terms of energy, and given our assumption
on λk, we can expand (35) as E ≈ ~2k2

2m . The condition
for suppression then becomes

4λd2mE

r~2
� 1 ⇐⇒ r � 4λd2mE

~2
, (63)

so that, in particular, suppression is only visible at suf-
ficiently small distances. Combining this with the large-
separation assumption, we note that this particular ex-
pression is valid in the regime

1� r

d
� 4λdmE

~2
. (64)

Note that in the commutative limit λ = 0, the upper limit
on the distance of observation vanishes and interference
is prevalent at all length scales of observation.

There are two remarkable features of (63) that dis-
tinguish it from the analogous classicality condition for
double-slit interference in the Moyal plane [1]. Firstly,
our suppression strength is here also affected by the dis-
tance r at which measurement is performed. Secondly
(indeed, consequently), here we are theoretically capa-
ble of observing suppression even at low momentum (by
taking r sufficiently small). These are important testable
predictions of our three-dimensional theory.

At this point, we can perform a similar back-of-the-
envelope estimate to that in [1] to get a sense of when we
should expect to see suppression in practice. Assuming
λ to be of the order of a Planck length, and d to be on
the order of 1cm, and considering an electron of energy
1eV, we expect to observe suppression of the interference
when

r .
(10−35 m)(10−2 m)2(10−31 kg)(10−19 kg m2 s−2)

(10−34 kg m2 s−1)2

= 10−21 m.

We should of course note that the values used here fall
well within the constraints, λk � 1 and (64), for which
(63) is valid. The required value of r is obviously ex-
tremely small, so we would not detect any suppression
at these energies. Conversely, to observe suppression
at lengths on the order of a meter requires an electron
to have energies around 1019 eV — again, quite unde-
tectable. Thankfully this is not concerning, since in the
next section we will show how, once multiple particles
are allowed to interfere, the suppression becomes much
more pronounced.

D. Macroscopic behaviour

In this section we derive how (61) scales with increased
particle number. Specifically, we modify our interference
setup to consider a collection of particles passing through
the pinholes. As usual our interest is in the collective
dynamics of this collection of particles, i.e. the centre-
of-mass dynamics, which we expect to exhibit classical
behaviour for a sufficiently large number of particles.

We begin by straightforwardly extending our core defi-
nitions to the multi-particle case. Consider a macroscopic
object comprised of N particles of equal mass m, with
total mass M := Nm. The total system is described by
the Hilbert space, Htot

q , constructed from particle Hilbert
spaces, H(n)

q , in the usual way,

Htot
q :=

N⊗
n=1

H(n)
q .

For simplicity, we neglect the symmetrisation (resp. anti-
symmetrisation) required by boson (resp. fermion) statis-
tics. Let the nth particle coordinate operators be denoted
x̂

(n)
i ; we assume that coordinate operators belonging to

different particles commute,[
x̂

(l)
i , x̂

(n)
j

]
= 2iλεijkδlnx̂

(l)
k . (65)

The collective motion is described with centre-of-mass
coordinates,

x̂(CM) :=
1

N

N∑
n=1

x̂(n), (66)

satisfying the commutation relations[
x̂

(CM)
i , x̂

(CM)
j

]
= 2i

λ

N
εijk x̂

(CM)
k , (67)

which are manifestly identical to those of x̂i, only with
λ̃ ≡ λ

N in place of λ. As usual, we also have the relative
coordinates, ξ̂(n) := x̂(n) − x̂(CM), which are easily seen
to have vanishing sum,

N∑
n=0

ξ̂(n) = 0.

At this point, the normal procedure is to transform to
centre-of-mass and relative coordinates in the Hamilto-
nian. Assuming translational invariance, i.e. interactions
depending only on the relative coordinates, allows one to
decouple the centre-of-mass and relative motion, leaving
free-particle centre-of-mass dynamics, with all internal
dynamics captured by the relative dynamics.

Here the procedure is more involved for two reasons:
firstly the more complicated form of the Laplacian oper-
ator, and secondly the fact that the centre-of-mass and
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relative coordinates no longer commute, rendering the
clean decoupling of centre-of-mass and relative dynam-
ics impossible. Even so, it is still possible to isolate the
centre-of-mass dynamics, as we proceed to show. The
first point to realise is that the centre-of-mass dynamics
are, as usual, governed by the free particle contribution
to the Hamiltonian, which reads

Ĥtot =

N∑
n=1

Ĥ(n),

where each Ĥ(n) is a straightforward generalisation of
(29),

Ĥ(n) := − ~2

2m
∆̂(n).

Indeed, wherever we use a superscript (n) on a known
operator, it should be assumed to act on the nth Hilbert
space, H(n)

q , but otherwise be defined as usual. Now the
(plane wave) eigenstates of Ĥtot are (up to normalisation)

∣∣∣k(i···N)
)
≡
∣∣∣k(1), . . . ,k(N)

)
:= exp

[
i

N∑
n=1

k(n) · x̂(n)

]
,

with eigenvalues

Ĥtot
∣∣∣k(i···N)

)
=

[
2~2

mλ2

N∑
n=1

sin2

(
k(n)λ

2

)] ∣∣∣k(i···N)
)

;

(68)
this is a simple extension of the single particle plane
waves, as per section IIIA. For one of these plane wave
solutions, we may define the total momentum,

ktot :=

N∑
n=1

k(n),

as well as the relative momenta,

q(n) := k(n) − 1

N
ktot,

noting, as with relative coordinates, the vanishing sum

N∑
n=1

q(n) = 0. (69)

Rewriting the N -particle plane wave in terms of total and
relative momenta yields

∣∣∣k(i···N)
)

= exp

[
iktot · x̂(CM) + i

N∑
n=1

q(n) · x̂(n)

]
.

For non-interacting particles, one expects the energy to
have two contributions — the centre-of-mass energy and
that of the relative (internal) motion. If all of the relative

momenta vanish, one therefore expects the latter energy
contribution to vanish, enabling one to isolate the centre-
of-mass dynamics. Let us assume therefore that q(n) = 0
for all n ∈ {1, 2, . . . , N}. In this case, the plane wave
eigenstates are especially simple,∣∣∣k(i···N)

)
= exp

[
iktot · x̂(CM)

]
, (70)

as are the corresponding energy eigenvalues,

Ĥtot
∣∣∣k(i···N)

)
=

2~2

Mλ̃2
sin2

(
ktotλ̃

2

)∣∣∣k(i···N)
)
. (71)

With no relative motion, we can also simplify the form
of Ĥtot. To see this, first define the total boson number
operator in the obvious way,

n̂tot :=

N∑
n=1

n̂(n),

then split the Hamiltonian as Ĥtot ≡ Ĥ0 + Ĥ1, where
the action of each term on a state ψ ∈ Htot

q (temporarily
suppress ket notation for simplicity) is defined by

Ĥtot ψ =
~2

2mλ2

N∑
n=1

1

n̂(n) + 1
[a(n)
α

†
, [a(n)

α , ψ]]

=
~2

2Mλ̃2

1

n̂tot +N

N∑
n=1

[a(n)
α

†
, [a(n)

α , ψ]]︸ ︷︷ ︸
Ĥ0 ψ

+
~2

2mλ2

N∑
n=1

(
1

n̂(n) + 1
− N

n̂tot +N

)
[a(n)
α

†
, [a(n)

α , ψ]]︸ ︷︷ ︸
Ĥ1 ψ

.

(72)

Next, note that only the first term, Ĥ0, contributes to
the energy eigenvalue of ψCM ≡

∣∣k(i···N)
)
. Indeed, we

find that[
a(n)
α

†
,
[
a(n)
α , ψCM

]]
=

4r̂(n)

λ
sin2

(
ktotλ

2N

)
ψCM,

using the same argument as in the derivation of (35)
presented in section IIIA, only with the replacement
k → ktot/N and the relevant (n) superscripts. Then
the action of Ĥ0 on ψCM,

Ĥ0 ψCM =
2~2

Mλ̃2
sin2

(
ktotλ̃

2

)
ψCM,

already accounts for the full energy, as per (71), so
Ĥ1

∣∣k(i···N)
)

= 0, meaning that, for plane wave solutions
without relative motion, the free Hamiltonian, Ĥtot, re-
duces to just the first term, Ĥ0. The conclusion is that
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Ĥ0 comprises the part of Ĥtot responsible for centre-
of-mass dynamics, whereas Ĥ1 constitutes the part re-
sponsible for internal dynamics and the coupling between
internal- and centre-of-mass dynamics.

For the more general case where the q(n) are allowed
to be non-zero, there is a free-particle (i.e. quadratic in
q(n)) contribution to the energy arising from the internal
motion, as well as higher-order corrections in λ reflecting
the coupling between centre-of-mass and internal dynam-
ics, as can be verified directly by expanding the right-
hand-side of (68) in the q(n) and using (69). Even if
interactions depending only on relative coordinates are
introduced, the Hamiltonian can still be split as in (72),
with the interactions forming part of Ĥ1. In this case,
the interactions also contribute to the internal energy as
a binding energy, and to the coupling of the centre-of-
mass and internal dynamics. Once again, the latter is
of higher-order in λ, and we can therefore decouple the
centre-of-mass and internal dynamics to lowest order in λ
and include higher-order effects perturbatively. Finally,
we remark that, as the internal energy is (to leading order
in λ) quadratic in the q(n), we can apply the equiparti-
tion theorem, which implies that the effect of the coupling
between the centre-of-mass and internal dynamics is con-
trolled by the temperature of the particle collection, and
therefore expected to be small at low temperatures.

More importantly, comparing the eigenstates and en-
ergy eigenvalues of Ĥtot ((70) and (71)) with those of the
single particle free Hamiltonian ((30) and (35)) it is clear
that we can treat the centre-of-mass dynamics like those
of a single particle with mass M , momentum ktot, and
non-commutative parameter λ̃. With this in mind, we
can revisit the classicality condition of (63), which for a
collection of particles now requires

r � 4λ̃ d2MEtot

~2
=

4λd2mEtot

~2
. (73)

Now the energy is extensive, since, by (71), we have that

Etot = N · 2~2

mλ2
sin2

(
〈k〉λ

2

)
= N〈E〉,

where we have defined the average momentum and en-
ergy,

〈k〉 :=
1

N
ktot, and 〈E〉 :=

2~2

mλ2
sin2

(
〈k〉λ

2

)
.

Finally, we can repeat the back-of-the-envelope estimate
that we performed in section VC with the new condition
of (73). We again take λ to be of the order of a Planck
length, d to be on the order of 1cm, and consider a col-
lection of electrons with average energy 1eV. Supposing
we have a number of electrons on the order of Avogadro’s
number, we can expect to see interference suppression at

distances on the order of

r .
1023(10−35 m)(10−2 m)2(10−31 kg)(10−19 kg m2 s−2)

(10−34 kg m2 s−1)2

= 100 m.

This is much more realistically detectable. Conversely, to
observe suppression at distances of the order of a meter
for this number of particles requires an average energy
orders of magnitude less than an electron volt, making
the interference suppression entirely observable at non-
relativistic energies. This represents a significant im-
provement over the situation in the Moyal plane, where,
although a quantum-to-classical transition exists, it is
only observed for particles travelling at speeds well above
the speed of light, even when collections of particles are
considered [1].

It is worth finally mentioning that experiments of the
type outlined above seem almost within the realm of pos-
sibility. One promising approach may be splitting and
recombining Bose-Einstein condensates [26] in a Mach-
Zehnder interferometer. Another might involve control-
ling and interfering a levitated nanosphere [27–29]. How-
ever, none of these experiments achieve control over quite
the number of particles assumed in our estimates. More-
over, one should be careful in directly applying the con-
clusions above to these situations as there is a true envi-
ronment in these experiments that will most likely lead to
higher levels of decoherence and suppression of interfer-
ence, since the suppression predicted above applies to an
ideally isolated system. With more control over the en-
vironment (and larger numbers of particles), these types
of experiments may, however, offer a way of probing this
phenomenon.

VI. CONCLUSION

In summary, we have treated a two-pinhole interfer-
ence pattern in the fuzzy sphere formalism of NCQM,
both for individual particles and collections of particles.
In so doing, we have seen how the fuzzy sphere formalism
not only supports a natural mechanism for quantum-to-
classical transition without the need for an external heat
bath, but, moreover, also addresses several key issues
with a similar transition in lower-dimensional NCQM
frameworks such as the Moyal plane.

Our findings are important for three reasons. Firstly,
they reinforce the notion that it really is the small-scale
structure of space responsible for suppression of quantum
behaviour at a macroscopic scale. Secondly, they demon-
strate that in three dimensions the transition is capable
of being observed for realistic numbers of particles travel-
ling at non-relativistic speeds. Thirdly, they uncover an
additional system parameter involved in controlling the
strength of suppression, namely the distance at which
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measurement is performed. The latter is an important
testable prediction of our theory.

Altogether, the results are promising and wholly sup-
port the proposed link between the microscopic structure
of space and macroscopic emergence of classicality.

Appendix A: Transformation Laws of Coherent
States

In this short appendix we derive the transformation
law for the action of a plane wave on a Glauber coherent
state |z〉.

As noted in section IIIA, the plane waves represent
(all of the) SU(2) group elements. A general g ∈ SU(2)
can be parameterised as

g ≡ g(q) = exp

[
i

2
q · σ̂

]
,

by some dimensionless vector q with norm q ∈ [0, 2π] and
direction q̂. This can be equivalently written (by Taylor
expanding the exponential, and using (q̂ · σ̂)2 = I),

g(q) = cos(q/2) + i sin(q/2) q̂ · σ̂. (A1)

Thanks to the Lie algebra isomorphism x̂i 7→ λσi, we can
represent g as an operator on Hc as

Π̂(g) = exp

[
iq · x̂

2λ

]
,

which formally resembles a plane wave with wavenumber
q (see (30)), only q is dimensionless, and so does not
represent a true wavenumber. We introduce dimensions
by replacing q ≡ 2λk, where k is a true dimensionful
wavenumber.

Note that, since Π̂(g) commutes with r̂2 (as each x̂i
does), it preserves the r̂2-eigenspaces (i.e. those with
fixed j, as per (10)). In particular, plane waves preserve
the vacuum state, Π̂(g) |0〉 = |0〉 , and in the j = 1/2
irrep they act as ordinary SU(2) matrices,

Π̂(g) |j = 1/2,m〉 = g

[
|j = 1/2,m = +1/2〉
|j = 1/2,m = −1/2〉

]
. (A2)

This is merely a statement of the j = 1/2 Wigner D-
function entries (see section 4.3.4 in [23], for instance).

Now consider the action of a plane wave on a coherent
state. The following computation closely mirrors (33), so
we likewise define Ĵi ≡ 1

2λ x̂i in this context. Then

Π̂(g) |z〉 = e−
1
2 z̄αzα exp

[
zα

(
Π̂(g) a†α Π̂(g)†

)]
|0〉 , (A3)

so the problem reduces to deriving the transformation
law for the boson creation operators a†α under the conju-
gation eiq·Ĵa†αe−iq·Ĵ . But it is easily shown that these bo-
son creation operators transform like rank-1/2 spherical

tensor operators with respect to the Ĵi; this just amounts
to checking (see section 5.2.3 in [23], for instance) the
commutation relations

[Ĵ3, a
†
α] =

(
3

2
− α

)
a†α,

[Ĵ+, a
†
α] = δα2 a

†
1,

[Ĵ−, a
†
α] = δα1 a

†
2,

(A4)

where Ĵ± := Ĵ1 ± iĴ2, as usual. Such tensor operators
transform under conjugation with Π̂(g) by the j = 1/2
Wigner D-matrices (see section 5.2 of [23], for instance),

eiq·Ĵa†αe
−iq·Ĵ = gβαa

†
β .

Inserting this into (A3) reduces it to Π̂(g) |z〉 = |gz〉 ,
a remarkably simple transformation law, reminiscent of
(33). In summary, in terms of dimensionful wavenumber
k, the action of a plane wave on a coherent state is given
by

eik·x̂ |z〉 = |g(k) z〉 , where

g(k) := eiλk·σ̂ = cos(λk) + i sin(λk)k̂ · σ̂.
(A5)

Appendix B: Matrix Elements with Coherent States

In this appendix we develop the necessary theory to
compute the matrix element of a general function g(n̂)
of the boson number operator with respect to a set of
coherent states. The key step involves introducing new
creation operators, then expanding the coherent states in
the Fock number basis of these new operators; this step
is presented in [13]. The original work here comprises
the special cases we consider. In particular, we derive
a compact closed form for the special case where g is a
polynomial, and, more notably, we treat the case where
g = gH,l, the (non-commutative) spherical Hankel func-
tion. The latter is vital to the discussion in section IIID,
as well as the main calculation of chapter IV.

1. General functions g(n̂)

Consider some function g(n̂) of the number operator
n̂ = a†αaα. We wish to compute the matrix element〈
z1
∣∣g(n̂)

∣∣z2
〉
, where the

∣∣zi〉 are (possibly distinct) co-
herent states. As in [13], we start by introducing new
creation operators,

A†i :=
1√
Ri
ziαa
†
α, where Ri = z̄iαz

i
α, (B1)

and then rewriting the coherent states in terms of the the
new operators,∣∣zi〉 = D̂i |0〉 ≡ e−Ri/2+

√
RiA

†
i |0〉 .
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Next, we expand the exponential in the above displace-
ment operator to express each coherent state in the basis
of Fock states (those corresponding to the new creation
operators) as

∣∣zi〉 = e−Ri/2
∞∑
n=0

R
n/2
i√
n!
|n〉i , (B2)

where the subscript on the ket indicates the boson mode
(i.e. distinguishes between application of each of the two
A†i ). Substituting this expansion into the desired matrix
element then gives

〈
z1
∣∣g(n̂)

∣∣z2
〉

= e−(R1+R2)/2
∑
n,m

R
n/2
1 R

m/2
2√

n!m!
g(m) 1〈n|m〉2

(B3)
Now clearly 1〈n|m〉2 = 0 whenever n 6= m, since each
|n〉i can be written (by binomial expansion on (A†i )

n) as
a linear combination of number states of the form |l1, l2〉,
where l1 + l2 = n — to wit, |n〉i indeed contains n total
particles. The overlap 1〈n|n〉2 is less trivial,

1〈n|n〉2 =
[
A1, A

†
2

]n
=

(
1√
R1R2

z̄1
αz

2
α

)n
,

which is easily derived using the Leibniz rule. Finally,
inserting the relevant Fock state overlaps, (B3) reduces
to

〈
z1
∣∣g(n̂)

∣∣z2
〉

= e−(R1+R2)/2
∑
n

g(n)

(
z̄1
αz

2
α

)n
n!

. (B4)

Deriving a closed form for the sum of this series is
often straightforward using the umbral calculus [30].
That said, this little-known calculus is thankfully sel-
dom needed; indeed, we proceed to explicitly compute
the sum for polynomial functions g without reference to
umbral calculus.

2. Polynomials g(n̂)

Since sides of (B4) are linear in g, we may focus with-
out loss of generality on the case g(n̂) = n̂k. For conve-
nience, we also define K := z̄1

αz
2
α. Then we may rewrite

g(n) using the well-known relationship [30]

g(n) = nk =

k∑
m=0

{
k
m

}
nm,

where nm denotes the falling factorial,

nm :=

m−1∏
k=0

(x− k),

k Tk(x)
0 1
1 x
2 x2 + x
3 x3 + 3x2 + x
4 x4 + 6x3 + 7x2 + x

TABLE I: Touchard polynomials Tk(x) up to k = 4

and
{
k
m

}
are the Stirling numbers of the second kind.

Then the sum in (B4) becomes

∞∑
n=0

g(n)
Kn

n!
=

k∑
m=0

{
k
m

} ∞∑
n=0

nm
Kn

n!

=

k∑
m=0

{
k
m

} ∞∑
n=0

(n+m)m
Kn+m

(n+m)!

=

k∑
m=0

{
k
m

}
Km ·

∞∑
n=0

Kn

n!

= eKTk(K).

We may shift the sum on the second line, since nm = 0
for all n ∈ {0, 1, . . . ,m − 1}. The functions Tk(x) :=∑k
m=0

{
k
m

}
xm are the Touchard polynomials, which are

easily looked up, say in the OEIS [31]. We tabulate the
first few Touchard polynomials in table I. In summary,
we have the special case of (B4),〈

z1
∣∣n̂k∣∣z2

〉
= e−(R1+R2)/2+KTk(K), (B5)

for Ri = z̄iαz
i
α and K = z̄1

αz
2
α. This of course recovers

the usual overlap of coherent states in the case k = 0.

3. Spherical Hankel function g(n̂) = gH,l(n̂, k)

In this subsection, we consider one more special case
— we compute the (leading-order behaviour of the)
matrix element of the (asymptotically-expanded) non-
commutative spherical Hankel function (see (45)),

g(n̂) ≡ gH,l(n̂, k) =
ei(n̂+l+1)κ

(in̂)l+1
,

with respect to an identical pair of coherent states,∣∣z1
〉

=
∣∣z2
〉
≡ |z〉 . This particular case, while highly

specific, is of great importance to the discussion in sec-
tion IIID and the subsequent calculation in chapter IV,
so it warrants discussion.

Now, we can of course apply the result of section B 1 in
the present context, but some care is needed — the coher-
ent state |z〉 is a superposition of all boson number states,
including the vacuum state, so the singular 1/n̂ causes
divergence in a naïve calculation. This is not really a
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problem: not only is the overlap |〈0|z〉|2 = e−R/2 van-
ishingly small for R ≡ z̄αzα � 1 (which is assumed for
the asymptotic form of gH,l as given above), but we can
entirely remove the divergence by defining g piecewise as
the regular solution gJ,l within some region around the
origin and the irregular solution gH,l outside of this re-
gion. Equivalently, we may as well use only the irregular
form, but exclude the point n = 0 from our computa-
tions. As such, we invoke (B4), but begin the sum at
n = 1, whereby

Hl,κ(R) ≡ 〈z|e
i(n̂+l+1)κ

(in̂)l+1
|z〉

= e−R
∞∑
n=1

ei(n+l+1)κ

n! (in)l+1
Rn

=
ei(l+1)κ

il+1
e−R(eiκR)

∞∑
n=0

(eiκR)n

(n+ 1)! (n+ 1)l+1
,

using the shorthand notation Hl,κ(R) for the desired ma-
trix element. Now the remaining sum can be written as
a generalised hypergeometric function,

pFq

[
a1, a2, · · · ap
b1, b2, · · · bq

; eiκR

]
.

Indeed, if βn denotes the nth coefficient,

βn :=
1

(n+ 1)!(n+ 1)l+1
,

then we have β0 = 1 (as required by convention of the
coefficients in the series of a hypergeometric function),
and the ratio

βn+1

βn
=

(n+ 1)l+2

(n+ 2)l+2(n+ 1)
,

is clearly a rational function of n, from which we can read
off the values p = q = l + 2, a1 = a2 = · · · = ap = 1, and
b1 = b2 = · · · = bq = 2, giving

Hl,κ(R) =
ei(l+2)κ

il+1
Re−R l+2Fl+2

[
1, 1, · · · 1
2, 2, · · · 2; eiκR

]
.

(B6)
It is worth noting that (by the ratio test) the series repre-
senting this hypergeometric function is both convergent
on all of C and entire, since p = l + 2 = q [32].

There is no algebraic representation of l+2Fl+2
, so

(B6) is the best we can do without further approxima-
tion. However, since we are already using an asymptotic
form of gH,l, we should similarly seek only the leading-
order large-R asymptotic behaviour of Hl,k. Thankfully,
the relevant hypergeometric function has a well-known
asymptotic expansion, given in equations 1.2 and 1.3
of [32], which in our context simplifies to

l+2Fl+2

[
1, 1, · · · 1
2, 2, · · · 2; z

]
∼ ezz−(l+2)

∞∑
k=0

ck z
−k,

for z →∞. The coefficients ck are defined recursively; for
our purposes it suffices to merely note that c0 = 1, since
it is clearly the k = 0 term that defines the leading-order
behaviour in this asymptotic limit. As such, we simply
truncate the series after the first term. Substituting the
appropriate argument and simplifying, we arrive at the
leading-order large-R behaviour of our matrix element,

Hl,κ(R) ∼ eR(cosκ−1)+iR sinκ

(iR)l+1
.
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