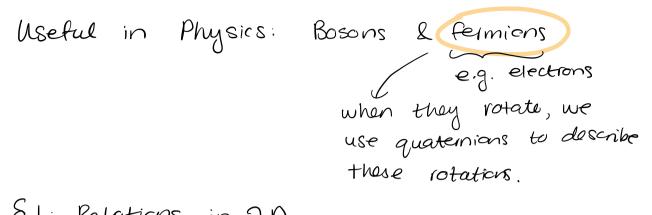
Quaternions and 3D Rotations [Talk by Dario 54-dimensional number system Trinchero on 25/4/24] William Hamilton asked: Itow does one multiply and divide numbers in 3D space? We know how to do this in 2D:

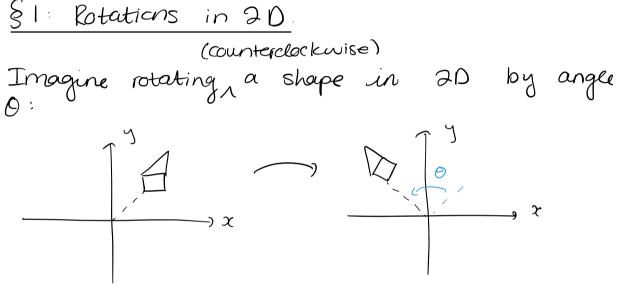
$$\frac{z_{1}}{z_{2}} = \frac{1+2i}{-2-2i} = \frac{-2-4-4i+2i}{4+4} = \frac{-6-2i}{8} = -\frac{3}{4} + \frac{1}{4}i$$

An analogue for 30 does <u>not</u> exist! L'<u>Proved by Froberius in 1877</u>: IRⁿ can only be equipped with a product which supports division if one of the following are true:

n=1: \mathbb{R} , the real numbers. n=2: \mathbb{C} , the complex numbers n=4: \mathbb{H} , the quaternions.

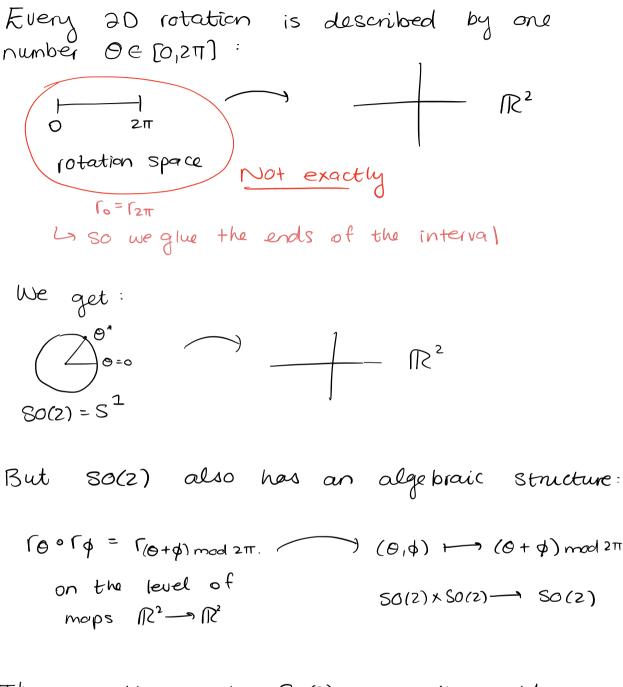
Quote by <u>Hamilton</u>: "And here downed on me the notion that we must admit, in some sense, a fourth dimension of space for the purpose of calculating with triples..! An electric circuit seemed to close, and a spart flashed forth."



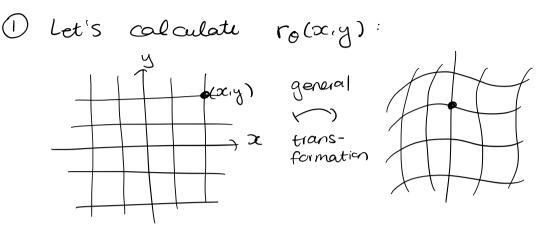


We have two questions: ① Ifou do we calculate where each point is mapped? ③ What does the space of rotations look like?

We have two spaces here: 1). space of rotations: 2). space being rotated r here r here r here r here $r r R^2 \rightarrow R^2$

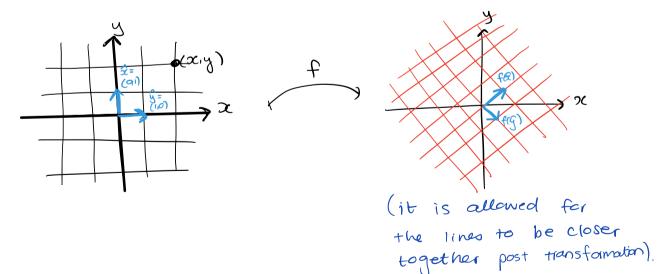


These operations make SO(2), as well as the collection $\{\Gamma_0 : \Pi R^2 \rightarrow \Pi R^2 \mid 0 \in SO(2)\}$ into an algebraic structure, called a Geroup. A set with binary operation such that there is an identity This answers (D). We element, inverses to each element, now look at (D): associative.



Transformations on 20 space can get messy, as seen above.

But Linear Transformations keep our (grid lines) parallel and equally -spaced, e.g.



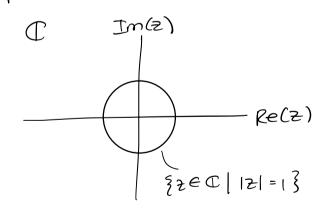
We only need to know where the transformation sends & and & to be able to describe the entive transformation.

This information can be encoded in a matrix: $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2x - y \\ x \end{bmatrix}.$

Rotations are linear transformations.

The matrix corresponding to rotation by O is: 50^{10}

But another way: ().embed SO(2) as a circle in the complex plane:



A point Ze So(2) has complex coordinates: Ze = cose + isine

So,

 $Z_{\Theta} Z_{\varphi} = (\cos \Theta + i \sin \Theta)(\cos \phi + i \sin \varphi)$ = ((\os \O \cos \phi - \sin \O \sin \Phi) + i (\sin \O \cos \Phi + \cos \O \sin \O)) = (\os (\O + \phi) + i \sin (\O + \Phi)) = Z_{\O + \O}

(2) embed
$$\mathbb{R}^2$$
 also in \mathbb{C} :
(x,y) \longmapsto $\mathcal{D}C+iy$.

Then the action of ro on (xy) is ALSO just complex multiplication:

$$r_{\theta}(x,y) = (\cos \theta + i \sin \theta) \cdot (x + iy)$$

= $(x \cos \theta - y \sin \theta) + i (x \sin \theta + y \cos \theta)$
$$cos \theta - \sin \theta - sin \theta + y - sin \theta - si$$

The complex numbers miraculously capture rotations in 2D!

Coming up:

This situation is slightly nicer than in 3D, but the following will hold:

We think of R³ as living in II, as well as SO(3), the space of 3D rotations.