
Dario Trinchero 20854714

Exploring
TensorProducts

“A tensor is a thing that transforms like a tensor!”

Stellenbosch University

May 2021

1/20
Motivation & Overview
Where we are going. . .

Why discuss tensors?

commonly encountered in undergrad without careful definition

the most common definition is ugly & opaque

many increasingly abstract & elegant definitions exist

tensors generalize undergrad topics of vectors, linear functionals &

operators

Where we are heading
We build to defining the tensor product as the unique space linearizing

bilinear maps. We touch on more abstract se�ings, and the tensor-hom

adjunction.

Dario Trinchero Exploring tensor products

1/20
Motivation & Overview
Where we are going. . .

Why discuss tensors?
commonly encountered in undergrad without careful definition

the most common definition is ugly & opaque

many increasingly abstract & elegant definitions exist

tensors generalize undergrad topics of vectors, linear functionals &

operators

Where we are heading
We build to defining the tensor product as the unique space linearizing

bilinear maps. We touch on more abstract se�ings, and the tensor-hom

adjunction.

Dario Trinchero Exploring tensor products

1/20
Motivation & Overview
Where we are going. . .

Why discuss tensors?
commonly encountered in undergrad without careful definition

the most common definition is ugly & opaque

many increasingly abstract & elegant definitions exist

tensors generalize undergrad topics of vectors, linear functionals &

operators

Where we are heading
We build to defining the tensor product as the unique space linearizing

bilinear maps. We touch on more abstract se�ings, and the tensor-hom

adjunction.

Dario Trinchero Exploring tensor products

1/20
Motivation & Overview
Where we are going. . .

Why discuss tensors?
commonly encountered in undergrad without careful definition

the most common definition is ugly & opaque

many increasingly abstract & elegant definitions exist

tensors generalize undergrad topics of vectors, linear functionals &

operators

Where we are heading
We build to defining the tensor product as the unique space linearizing

bilinear maps. We touch on more abstract se�ings, and the tensor-hom

adjunction.

Dario Trinchero Exploring tensor products

1/20
Motivation & Overview
Where we are going. . .

Why discuss tensors?
commonly encountered in undergrad without careful definition

the most common definition is ugly & opaque

many increasingly abstract & elegant definitions exist

tensors generalize undergrad topics of vectors, linear functionals &

operators

Where we are heading
We build to defining the tensor product as the unique space linearizing

bilinear maps. We touch on more abstract se�ings, and the tensor-hom

adjunction.

Dario Trinchero Exploring tensor products

1/20
Motivation & Overview
Where we are going. . .

Why discuss tensors?
commonly encountered in undergrad without careful definition

the most common definition is ugly & opaque

many increasingly abstract & elegant definitions exist

tensors generalize undergrad topics of vectors, linear functionals &

operators

Where we are heading
We build to defining the tensor product as the unique space linearizing

bilinear maps. We touch on more abstract se�ings, and the tensor-hom

adjunction.

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y

(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C

1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is a set X with element 0X ∈ X , and operations

+: X × X → X and · : C× X → X , satisfying, for all x, y, z ∈ X , λ, µ ∈ C,

x + y = y + x

(x + y) + z = x + (y + z)

x + 0X = x

∃x∗ ∈ X : x + x
∗ = 0X

 (X ,+) is an Abelian group

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is an Abelian group (X ,+) with operation

· : C× X → X , satisfying, for all x, y ∈ X , λ, µ ∈ C,

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Notation
Herea�er, take X ,Y ,Z to be complex vector spaces.

De�nition (Dual space)
The vector space X

∗
of all linear functionals X → C is the dual space of X .

If X has basis B = (b1, . . . , bn), then X
∗

has dual basis (β1, . . . , βn), where

βj (bi) := δij .

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is an Abelian group (X ,+) with operation

· : C× X → X , satisfying, for all x, y ∈ X , λ, µ ∈ C,

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Notation
Herea�er, take X ,Y ,Z to be complex vector spaces.

De�nition (Dual space)
The vector space X

∗
of all linear functionals X → C is the dual space of X .

If X has basis B = (b1, . . . , bn), then X
∗

has dual basis (β1, . . . , βn), where

βj (bi) := δij .

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Revising vector spaces

De�nition (Vector space)
A complex vector space is an Abelian group (X ,+) with operation

· : C× X → X , satisfying, for all x, y ∈ X , λ, µ ∈ C,

λ · (x + y) = λ · x + λ · y
(λ+ µ) · x = λ · x + µ · x

}
distributive laws

(λµ) · x = λ · (µ · x) compatibility of · with C
1 · x = x identity of ·

Notation
Herea�er, take X ,Y ,Z to be complex vector spaces.

De�nition (Dual space)
The vector space X

∗
of all linear functionals X → C is the dual space of X .

If X has basis B = (b1, . . . , bn), then X
∗

has dual basis (β1, . . . , βn), where

βj (bi) := δij .

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Equivalence relations & quotients

De�nition (Equivalence relation)
An equivalence relation ∼ on a set S is a binary relation (subset of S × S)

satisfying, for all x, y, z ∈ S,

x ∼ x reflexivity

x ∼ y =⇒ y ∼ x symmetry

x ∼ y ∧ y ∼ z =⇒ x ∼ z transitivity

De�nition (Quotient vector space)
For each x ∈ S, define the equivalence class [x] := {y ∈ S : y ∼ x}, and

the quotient space S/ ∼:= {[x] : x ∈ S}. For vector space X , note that

X/ ∼ is also a vector space if we define [x] + [y] := [x + y], λ[x] := [λx].

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Equivalence relations & quotients

De�nition (Equivalence relation)
An equivalence relation ∼ on a set S is a binary relation (subset of S × S)

satisfying, for all x, y, z ∈ S,

x ∼ x reflexivity

x ∼ y =⇒ y ∼ x symmetry

x ∼ y ∧ y ∼ z =⇒ x ∼ z transitivity

De�nition (Quotient vector space)
For each x ∈ S, define the equivalence class [x] := {y ∈ S : y ∼ x}, and

the quotient space S/ ∼:= {[x] : x ∈ S}. For vector space X , note that

X/ ∼ is also a vector space if we define [x] + [y] := [x + y], λ[x] := [λx].

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Equivalence relations & quotients

De�nition (Equivalence relation)
An equivalence relation ∼ on a set S is a binary relation (subset of S × S)

satisfying, for all x, y, z ∈ S,

x ∼ x reflexivity

x ∼ y =⇒ y ∼ x symmetry

x ∼ y ∧ y ∼ z =⇒ x ∼ z transitivity

De�nition (Quotient vector space)
For each x ∈ S, define the equivalence class [x] := {y ∈ S : y ∼ x}, and

the quotient space S/ ∼:= {[x] : x ∈ S}. For vector space X , note that

X/ ∼ is also a vector space if we define [x] + [y] := [x + y], λ[x] := [λx].

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Equivalence relations & quotients

De�nition (Equivalence relation)
An equivalence relation ∼ on a set S is a binary relation (subset of S × S)

satisfying, for all x, y, z ∈ S,

x ∼ x reflexivity

x ∼ y =⇒ y ∼ x symmetry

x ∼ y ∧ y ∼ z =⇒ x ∼ z transitivity

De�nition (Quotient vector space)
For each x ∈ S, define the equivalence class [x] := {y ∈ S : y ∼ x}, and

the quotient space S/ ∼:= {[x] : x ∈ S}. For vector space X , note that

X/ ∼ is also a vector space if we define [x] + [y] := [x + y], λ[x] := [λx].

Dario Trinchero Exploring tensor products

2/20
Preliminaries
Equivalence relations & quotients

De�nition (Equivalence relation)
An equivalence relation ∼ on a set S is a binary relation (subset of S × S)

satisfying, for all x, y, z ∈ S,

x ∼ x reflexivity

x ∼ y =⇒ y ∼ x symmetry

x ∼ y ∧ y ∼ z =⇒ x ∼ z transitivity

De�nition (Quotient vector space)
For each x ∈ S, define the equivalence class [x] := {y ∈ S : y ∼ x}, and

the quotient space S/ ∼:= {[x] : x ∈ S}. For vector space X , note that

X/ ∼ is also a vector space if we define [x] + [y] := [x + y], λ[x] := [λx].

Dario Trinchero Exploring tensor products

3/20
Component Definition
“A tensor is a thing that transforms like a tensor!”

Texts aimed at physicists[7] typically define:

De�nition 1 (Tensor)
A tensor of type (p, q) on X is a multidimensional array [TB]

i1...ip
j1...jq

for

chosen basis B = (b1, . . . , bn) of X , such that under change of basis

B 7→ C =
(
biP

i

1
, . . . , biP

i

n

)
, the components transform according to:

[TC]
i
′
1
...i′

p

j
′
1
...j′

q

=
(
P
−1
)

i
′
1

i1

· · ·
(
P
−1
)

i
′
p

ip

[TB]
i1...ip
j1...jq

P
j1

j
′
1

· · · P jq

j
′
q

.

. what??!

Dario Trinchero Exploring tensor products

3/20
Component Definition
“A tensor is a thing that transforms like a tensor!”

Texts aimed at physicists[7] typically define:

De�nition 1 (Tensor)
A tensor of type (p, q) on X is a multidimensional array [TB]

i1...ip
j1...jq

for

chosen basis B = (b1, . . . , bn) of X , such that under change of basis

B 7→ C =
(
biP

i

1
, . . . , biP

i

n

)
, the components transform according to:

[TC]
i
′
1
...i′

p

j
′
1
...j′

q

=
(
P
−1
)

i
′
1

i1

· · ·
(
P
−1
)

i
′
p

ip

[TB]
i1...ip
j1...jq

P
j1

j
′
1

· · · P jq

j
′
q

.

. what??!

Dario Trinchero Exploring tensor products

4/20
Examples of Tensors
Unpacking the mess

Let us look at 3 specific simple cases.

Example (Tensor of type (1, 0))
1D array [TB]i

, which under B = (b1, . . . , bn) 7→
(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

= (P
−1)

i
′

i
[TB]i

Just the (“contravariant”) transformation of vector coordinates!

recall change-of-basis matrix

PB←C :=

 [c1]B [c2]B . . . [cn]B

so the basis vectors transform cj = bi (PB←C)

ij
≡ biP

i

j
from above

but coordinates transform by the inverse matrix:

[vC] = PC←B [vB] = (PB←C)−1 [vB] ,

Dario Trinchero Exploring tensor products

4/20
Examples of Tensors
Unpacking the mess

Let us look at 3 specific simple cases.

Example (Tensor of type (1, 0))
1D array [TB]i

, which under B = (b1, . . . , bn) 7→
(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

= (P
−1)

i
′

i
[TB]i

Just the (“contravariant”) transformation of vector coordinates!

recall change-of-basis matrix

PB←C :=

 [c1]B [c2]B . . . [cn]B

so the basis vectors transform cj = bi (PB←C)

ij
≡ biP

i

j
from above

but coordinates transform by the inverse matrix:

[vC] = PC←B [vB] = (PB←C)−1 [vB] ,

Dario Trinchero Exploring tensor products

4/20
Examples of Tensors
Unpacking the mess

Let us look at 3 specific simple cases.

Example (Tensor of type (1, 0))
1D array [TB]i

, which under B = (b1, . . . , bn) 7→
(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

= (P
−1)

i
′

i
[TB]i

Just the (“contravariant”) transformation of vector coordinates!

recall change-of-basis matrix

PB←C :=

 [c1]B [c2]B . . . [cn]B

so the basis vectors transform cj = bi (PB←C)
ij
≡ biP

i

j
from above

but coordinates transform by the inverse matrix:

[vC] = PC←B [vB] = (PB←C)−1 [vB] ,

Dario Trinchero Exploring tensor products

4/20
Examples of Tensors
Unpacking the mess

Let us look at 3 specific simple cases.

Example (Tensor of type (1, 0))
1D array [TB]i

, which under B = (b1, . . . , bn) 7→
(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

= (P
−1)

i
′

i
[TB]i

Just the (“contravariant”) transformation of vector coordinates!

recall change-of-basis matrix

PB←C :=

 [c1]B [c2]B . . . [cn]B

so the basis vectors transform cj = bi (PB←C)

ij
≡ biP

i

j
from above

but coordinates transform by the inverse matrix:

[vC] = PC←B [vB] = (PB←C)−1 [vB] ,

Dario Trinchero Exploring tensor products

4/20
Examples of Tensors
Unpacking the mess

Let us look at 3 specific simple cases.

Example (Tensor of type (1, 0))
1D array [TB]i

, which under B = (b1, . . . , bn) 7→
(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

= (P
−1)

i
′

i
[TB]i

Just the (“contravariant”) transformation of vector coordinates!

recall change-of-basis matrix

PB←C :=

 [c1]B [c2]B . . . [cn]B

so the basis vectors transform cj = bi (PB←C)

ij
≡ biP

i

j
from above

but coordinates transform by the inverse matrix:

[vC] = PC←B [vB] = (PB←C)−1 [vB] ,

Dario Trinchero Exploring tensor products

5/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (0, 1))
1D array [TB]

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]
j
′ = [TB]

j
P

j

j
′

Just the (“covariant”) transformation of linear functional (“covector”)

coordinates!

components [fB]
i

of linear functional f with respect to dual basis of B
are computed [fB]

i
= f (bi)

the basis vectors transform cj = bi (PB←C)
ij
≡ biP

i

j

hence [fC]
j

= f (cj) = f

(
biP

i

j

)
= f (bi)P

i

j
= [fB]

i
P

i

j

Dario Trinchero Exploring tensor products

5/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (0, 1))
1D array [TB]

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]
j
′ = [TB]

j
P

j

j
′

Just the (“covariant”) transformation of linear functional (“covector”)

coordinates!

components [fB]
i

of linear functional f with respect to dual basis of B
are computed [fB]

i
= f (bi)

the basis vectors transform cj = bi (PB←C)
ij
≡ biP

i

j

hence [fC]
j

= f (cj) = f

(
biP

i

j

)
= f (bi)P

i

j
= [fB]

i
P

i

j

Dario Trinchero Exploring tensor products

5/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (0, 1))
1D array [TB]

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]
j
′ = [TB]

j
P

j

j
′

Just the (“covariant”) transformation of linear functional (“covector”)

coordinates!

components [fB]
i

of linear functional f with respect to dual basis of B
are computed [fB]

i
= f (bi)

the basis vectors transform cj = bi (PB←C)
ij
≡ biP

i

j

hence [fC]
j

= f (cj) = f

(
biP

i

j

)
= f (bi)P

i

j
= [fB]

i
P

i

j

Dario Trinchero Exploring tensor products

5/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (0, 1))
1D array [TB]

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]
j
′ = [TB]

j
P

j

j
′

Just the (“covariant”) transformation of linear functional (“covector”)

coordinates!

components [fB]
i

of linear functional f with respect to dual basis of B
are computed [fB]

i
= f (bi)

the basis vectors transform cj = bi (PB←C)
ij
≡ biP

i

j

hence [fC]
j

= f (cj) = f

(
biP

i

j

)
= f (bi)P

i

j
= [fB]

i
P

i

j

Dario Trinchero Exploring tensor products

5/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (0, 1))
1D array [TB]

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]
j
′ = [TB]

j
P

j

j
′

Just the (“covariant”) transformation of linear functional (“covector”)

coordinates!

components [fB]
i

of linear functional f with respect to dual basis of B
are computed [fB]

i
= f (bi)

the basis vectors transform cj = bi (PB←C)
ij
≡ biP

i

j

hence [fC]
j

= f (cj) = f

(
biP

i

j

)
= f (bi)P

i

j
= [fB]

i
P

i

j

Dario Trinchero Exploring tensor products

6/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (1, 1))
2D array [TB]i

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

j
′ = (P

−1)
i
′

i
[TB]i

j
P

j

j
′

Just the transformation of linear operator components (matrices)!

the components [MB]
ij

of linear operator M with respect to basis B
are computed [MB]

ij
= [M(bj)B]i

applying previous examples, with linearity,

[MC]
ij

= [M(cj)C]i =
[(

T (bj
′)P

j
′

j

)
C

]
=
(
P
−1
)

i

i
′ [M(bj

′)B]i
′
P

j
′

j
=
(
P
−1
)

i

i
′ [MB]

i
′
j
′ P

j
′

j

Dario Trinchero Exploring tensor products

6/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (1, 1))
2D array [TB]i

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

j
′ = (P

−1)
i
′

i
[TB]i

j
P

j

j
′

Just the transformation of linear operator components (matrices)!

the components [MB]
ij

of linear operator M with respect to basis B
are computed [MB]

ij
= [M(bj)B]i

applying previous examples, with linearity,

[MC]
ij

= [M(cj)C]i =
[(

T (bj
′)P

j
′

j

)
C

]
=
(
P
−1
)

i

i
′ [M(bj

′)B]i
′
P

j
′

j
=
(
P
−1
)

i

i
′ [MB]

i
′
j
′ P

j
′

j

Dario Trinchero Exploring tensor products

6/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (1, 1))
2D array [TB]i

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

j
′ = (P

−1)
i
′

i
[TB]i

j
P

j

j
′

Just the transformation of linear operator components (matrices)!

the components [MB]
ij

of linear operator M with respect to basis B
are computed [MB]

ij
= [M(bj)B]i

applying previous examples, with linearity,

[MC]
ij

= [M(cj)C]i =
[(

T (bj
′)P

j
′

j

)
C

]
=
(
P
−1
)

i

i
′ [M(bj

′)B]i
′
P

j
′

j
=
(
P
−1
)

i

i
′ [MB]

i
′
j
′ P

j
′

j

Dario Trinchero Exploring tensor products

6/20
Examples of Tensors
Unpacking the mess

Example (Tensor of type (1, 1))
2D array [TB]i

j
, which under B = (b1, . . . , bn) 7→

(
biP

i

1
, . . . , biP

i

n

)
= C,

transforms by [TC]i
′

j
′ = (P

−1)
i
′

i
[TB]i

j
P

j

j
′

Just the transformation of linear operator components (matrices)!

the components [MB]
ij

of linear operator M with respect to basis B
are computed [MB]

ij
= [M(bj)B]i

applying previous examples, with linearity,

[MC]
ij

= [M(cj)C]i =
[(

T (bj
′)P

j
′

j

)
C

]
=
(
P
−1
)

i

i
′ [M(bj

′)B]i
′
P

j
′

j
=
(
P
−1
)

i

i
′ [MB]

i
′
j
′ P

j
′

j

Dario Trinchero Exploring tensor products

7/20
Reflecting on Our Findings
Towards tensor product & rank

Note (Co- & contravariance)
Our examples suggest, informally,

1 contravariant (upper) indices act like vector components

2 covariant (lower) indices act like covector (linear functional)

components

�estion: Type-(1, 1) tensors act like matrices.

Can we view a matrix in terms of vector-covector pairs?

Yes. Consider theorem 7.14 from Poole[5]:

Theorem (Singular-value decomposition)
An m× n matrix A of rank r ≤ n may be wri�en in the form

A = σ1u1vT

1
+ · · ·+ σrurvT

r
,

where the σi are called the “singular values” of A.

Dario Trinchero Exploring tensor products

7/20
Reflecting on Our Findings
Towards tensor product & rank

Note (Co- & contravariance)
Our examples suggest, informally,

1 contravariant (upper) indices act like vector components

2 covariant (lower) indices act like covector (linear functional)

components

�estion: Type-(1, 1) tensors act like matrices.

Can we view a matrix in terms of vector-covector pairs?

Yes. Consider theorem 7.14 from Poole[5]:

Theorem (Singular-value decomposition)
An m× n matrix A of rank r ≤ n may be wri�en in the form

A = σ1u1vT

1
+ · · ·+ σrurvT

r
,

where the σi are called the “singular values” of A.

Dario Trinchero Exploring tensor products

7/20
Reflecting on Our Findings
Towards tensor product & rank

Note (Co- & contravariance)
Our examples suggest, informally,

1 contravariant (upper) indices act like vector components

2 covariant (lower) indices act like covector (linear functional)

components

�estion: Type-(1, 1) tensors act like matrices.

Can we view a matrix in terms of vector-covector pairs?

Yes. Consider theorem 7.14 from Poole[5]:

Theorem (Singular-value decomposition)
An m× n matrix A of rank r ≤ n may be wri�en in the form

A = σ1u1vT

1
+ · · ·+ σrurvT

r
,

where the σi are called the “singular values” of A.

Dario Trinchero Exploring tensor products

7/20
Reflecting on Our Findings
Towards tensor product & rank

Note (Co- & contravariance)
Our examples suggest, informally,

1 contravariant (upper) indices act like vector components

2 covariant (lower) indices act like covector (linear functional)

components

�estion: Type-(1, 1) tensors act like matrices.

Can we view a matrix in terms of vector-covector pairs?

Yes. Consider theorem 7.14 from Poole[5]:

Theorem (Singular-value decomposition)
An m× n matrix A of rank r ≤ n may be wri�en in the form

A = σ1u1vT

1
+ · · ·+ σrurvT

r
,

where the σi are called the “singular values” of A.

Dario Trinchero Exploring tensor products

8/20
The Free Vector Space
Brief interlude to set up tensor product

We can construct a vector space with any given set as basis:

De�nition (Free vector space)
The free vector space F (S) over set S is the space of C-valued functions

of finite support on S (with usual addition & scaling).

Note (Formal linear combinations)
We commonly write f ∈ F (S) as a formal linear combination∑

x∈S

f (x)x

of elements of S. There are finitely-many non-0 coe�icients, since f has

finite support.

Dario Trinchero Exploring tensor products

8/20
The Free Vector Space
Brief interlude to set up tensor product

We can construct a vector space with any given set as basis:

De�nition (Free vector space)
The free vector space F (S) over set S is the space of C-valued functions

of finite support on S (with usual addition & scaling).

Note (Formal linear combinations)
We commonly write f ∈ F (S) as a formal linear combination∑

x∈S

f (x)x

of elements of S. There are finitely-many non-0 coe�icients, since f has

finite support.

Dario Trinchero Exploring tensor products

9/20
�otient Space Definition
An admi�edly only-slightly-more-elegant formulation

De�nition 2 (Tensor product)
The tensor product X ⊗ Y is the quotient space, F(X × Y)/ ∼, of the free

vector space by the equivalence relation ∼ generated by:

(x1, y) + (x2, y) ∼ (x1 + x2, y),

λ(x, y) ∼ (λx, y),

(x, y1) + (x, y2) ∼ (x, y1 + y2)

λ(x, y) ∼ (x, λy)

Write x ⊗ y := [(x, y)] ∈ X ⊗ Y .

De�nition 3 (Tensor)
A tensor of type (p, q) on X is a vector in X ⊗ · · · ⊗ X︸ ︷︷ ︸

p

⊗X
∗ ⊗ · · · ⊗ X

∗︸ ︷︷ ︸
q

.

This formalizes the link between (co-/)contravariant indices & (co-)vectors.

Dario Trinchero Exploring tensor products

9/20
�otient Space Definition
An admi�edly only-slightly-more-elegant formulation

De�nition 2 (Tensor product)
The tensor product X ⊗ Y is the quotient space, F(X × Y)/ ∼, of the free

vector space by the equivalence relation ∼ generated by:

(x1, y) + (x2, y) ∼ (x1 + x2, y),

λ(x, y) ∼ (λx, y),

(x, y1) + (x, y2) ∼ (x, y1 + y2)

λ(x, y) ∼ (x, λy)

Write x ⊗ y := [(x, y)] ∈ X ⊗ Y .

De�nition 3 (Tensor)
A tensor of type (p, q) on X is a vector in X ⊗ · · · ⊗ X︸ ︷︷ ︸

p

⊗X
∗ ⊗ · · · ⊗ X

∗︸ ︷︷ ︸
q

.

This formalizes the link between (co-/)contravariant indices & (co-)vectors.

Dario Trinchero Exploring tensor products

9/20
�otient Space Definition
An admi�edly only-slightly-more-elegant formulation

De�nition 2 (Tensor product)
The tensor product X ⊗ Y is the quotient space, F(X × Y)/ ∼, of the free

vector space by the equivalence relation ∼ generated by:

(x1, y) + (x2, y) ∼ (x1 + x2, y),

λ(x, y) ∼ (λx, y),

(x, y1) + (x, y2) ∼ (x, y1 + y2)

λ(x, y) ∼ (x, λy)

Write x ⊗ y := [(x, y)] ∈ X ⊗ Y .

De�nition 3 (Tensor)
A tensor of type (p, q) on X is a vector in X ⊗ · · · ⊗ X︸ ︷︷ ︸

p

⊗X
∗ ⊗ · · · ⊗ X

∗︸ ︷︷ ︸
q

.

This formalizes the link between (co-/)contravariant indices & (co-)vectors.

Dario Trinchero Exploring tensor products

9/20
�otient Space Definition
An admi�edly only-slightly-more-elegant formulation

De�nition 2 (Tensor product)
The tensor product X ⊗ Y is the quotient space, F(X × Y)/ ∼, of the free

vector space by the equivalence relation ∼ generated by:

(x1, y) + (x2, y) ∼ (x1 + x2, y),

λ(x, y) ∼ (λx, y),

(x, y1) + (x, y2) ∼ (x, y1 + y2)

λ(x, y) ∼ (x, λy)

Write x ⊗ y := [(x, y)] ∈ X ⊗ Y .

De�nition 3 (Tensor)
A tensor of type (p, q) on X is a vector in X ⊗ · · · ⊗ X︸ ︷︷ ︸

p

⊗X
∗ ⊗ · · · ⊗ X

∗︸ ︷︷ ︸
q

.

This formalizes the link between (co-/)contravariant indices & (co-)vectors.

Dario Trinchero Exploring tensor products

10/20
�otient Space Definition
Recovering components

Lemma (Basis for tensor product)
Given bases B = (b1, . . . , bn), C = (c1, . . . , cm) for X and Y respectively, the

vectors bi ⊗ cj form a basis for X ⊗ Y.

Proof.

1 For linear indepdendence, note that (bi, cj) 6∼ (bi
′ , cj

′) whenever

(i, j) 6= (i
′, j′), or we would have two linearly-dependent vectors in

either B or C.

2 The general element of X ⊗ Y has the form

∑
i
λixi ⊗ yi, for

xi ∈ X , yi ∈ Y . Expanding each xi and yi in the bases, and using

linearity, we express this as a linear combination of vectors bi ⊗ cj . �

Dario Trinchero Exploring tensor products

10/20
�otient Space Definition
Recovering components

Lemma (Basis for tensor product)
Given bases B = (b1, . . . , bn), C = (c1, . . . , cm) for X and Y respectively, the

vectors bi ⊗ cj form a basis for X ⊗ Y.

Proof.
1 For linear indepdendence, note that (bi, cj) 6∼ (bi

′ , cj
′) whenever

(i, j) 6= (i
′, j′), or we would have two linearly-dependent vectors in

either B or C.

2 The general element of X ⊗ Y has the form

∑
i
λixi ⊗ yi, for

xi ∈ X , yi ∈ Y . Expanding each xi and yi in the bases, and using

linearity, we express this as a linear combination of vectors bi ⊗ cj . �

Dario Trinchero Exploring tensor products

10/20
�otient Space Definition
Recovering components

Lemma (Basis for tensor product)
Given bases B = (b1, . . . , bn), C = (c1, . . . , cm) for X and Y respectively, the

vectors bi ⊗ cj form a basis for X ⊗ Y.

Proof.
1 For linear indepdendence, note that (bi, cj) 6∼ (bi

′ , cj
′) whenever

(i, j) 6= (i
′, j′), or we would have two linearly-dependent vectors in

either B or C.

2 The general element of X ⊗ Y has the form

∑
i
λixi ⊗ yi, for

xi ∈ X , yi ∈ Y . Expanding each xi and yi in the bases, and using

linearity, we express this as a linear combination of vectors bi ⊗ cj . �

Dario Trinchero Exploring tensor products

10/20
�otient Space Definition
Recovering components

Lemma (Basis for tensor product)
Given bases B = (b1, . . . , bn), C = (c1, . . . , cm) for X and Y respectively, the

vectors bi ⊗ cj form a basis for X ⊗ Y.

De�nition (Components of tensor)
The components [TB]

i1...ip
j1...jq

of tensor T of type (p, q) on X are its expansion

coe�icients wih respect to the induced basis on

X ⊗ · · · ⊗ X ⊗ X
∗ ⊗ · · · ⊗ X

∗
:

T = [TB]
i1...ip
j1...jq

bi1
⊗ · · · ⊗ bip

⊗ βj1 ⊗ · · · ⊗ βjq .

Note (Transformation law)
It is clear that this satisfies the required transformation law under

change-of-basis. Loosely, each b vector acquires a prefactor of P
−1

, and

each β a prefactor of P .

Dario Trinchero Exploring tensor products

10/20
�otient Space Definition
Recovering components

Lemma (Basis for tensor product)
Given bases B = (b1, . . . , bn), C = (c1, . . . , cm) for X and Y respectively, the

vectors bi ⊗ cj form a basis for X ⊗ Y.

De�nition (Components of tensor)
The components [TB]

i1...ip
j1...jq

of tensor T of type (p, q) on X are its expansion

coe�icients wih respect to the induced basis on

X ⊗ · · · ⊗ X ⊗ X
∗ ⊗ · · · ⊗ X

∗
:

T = [TB]
i1...ip
j1...jq

bi1
⊗ · · · ⊗ bip

⊗ βj1 ⊗ · · · ⊗ βjq .

Note (Transformation law)
It is clear that this satisfies the required transformation law under

change-of-basis. Loosely, each b vector acquires a prefactor of P
−1

, and

each β a prefactor of P .

Dario Trinchero Exploring tensor products

10/20
�otient Space Definition
Recovering rank

De�nition (Rank)
An elementary tensor R (of type (p, q)) can be wri�en as a single term

R = a1 ⊗ · · · ⊗ ap ⊗ α1 ⊗ · · · ⊗ αq, for non-0 ai ∈ X , αi ∈ X
∗
. The rank of

tensor T is the minimum number of elementary tensors summing to T .

Note (Rank)
This definition coincides with how the matrix rank (dimension of

row-space) entered the singular value decomposition! A rank-r matrix was

expressible thereby as a sum of r elementary terms σiuivT

i
.

Dario Trinchero Exploring tensor products

10/20
�otient Space Definition
Recovering rank

De�nition (Rank)
An elementary tensor R (of type (p, q)) can be wri�en as a single term

R = a1 ⊗ · · · ⊗ ap ⊗ α1 ⊗ · · · ⊗ αq, for non-0 ai ∈ X , αi ∈ X
∗
. The rank of

tensor T is the minimum number of elementary tensors summing to T .

Note (Rank)
This definition coincides with how the matrix rank (dimension of

row-space) entered the singular value decomposition! A rank-r matrix was

expressible thereby as a sum of r elementary terms σiuivT

i
.

Dario Trinchero Exploring tensor products

11/20 Bilinear Maps

De�nition (Bilinear maps & forms)
A bilinear map is a map F : X × Y → Z , which is linear in both arguments:

F (λx1 + µx2, y) = λF (x1, y) + µF (x2, y)

F (x, λy1 + µy2) = λF (x, y1) + µF (x, y2)

F is a bilinear form if Z = C.

Notation (Bilinear maps & forms)
Write B(X × Y ,Z) for the vector space of bilinear maps into Z , and

B(X × Y) for that of bilinear forms.

Dario Trinchero Exploring tensor products

11/20 Bilinear Maps

De�nition (Bilinear maps & forms)
A bilinear map is a map F : X × Y → Z , which is linear in both arguments:

F (λx1 + µx2, y) = λF (x1, y) + µF (x2, y)

F (x, λy1 + µy2) = λF (x, y1) + µF (x, y2)

F is a bilinear form if Z = C.

Notation (Bilinear maps & forms)
Write B(X × Y ,Z) for the vector space of bilinear maps into Z , and

B(X × Y) for that of bilinear forms.

Dario Trinchero Exploring tensor products

11/20 Bilinear Maps

De�nition (Bilinear maps & forms)
A bilinear map is a map F : X × Y → Z , which is linear in both arguments:

F (λx1 + µx2, y) = λF (x1, y) + µF (x2, y)

F (x, λy1 + µy2) = λF (x, y1) + µF (x, y2)

F is a bilinear form if Z = C.

Notation (Bilinear maps & forms)
Write B(X × Y ,Z) for the vector space of bilinear maps into Z , and

B(X × Y) for that of bilinear forms.

Dario Trinchero Exploring tensor products

12/20
Bilinear Form Definitions
Two ways!

Just as linear functionals are type-(0, 1) tensors, we can think of bilinear

forms on X × X as type-(0, 2) tensors on X . This motivates the definition

in Jeevanjee[1]:

De�nition 4 (Tensor product)
The tensor product X ⊗ Y is the subspace of B(X

∗ × Y
∗) spanned by

bilinear forms x ⊗ y , defined

(x ⊗ y)(f , g) := f (x)g(y) for each x ∈ X , y ∈ Y .

The definition in Ryan[6] looks subtly di�erent:

De�nition 5 (Tensor product)
The tensor product X ⊗ Y is the subspace of B(X × Y)∗ spanned by

functionals x ⊗ y , defined

(x ⊗ y)(F) := F (x, y), for each x ∈ X , y ∈ Y .

Dario Trinchero Exploring tensor products

12/20
Bilinear Form Definitions
Two ways!

Just as linear functionals are type-(0, 1) tensors, we can think of bilinear

forms on X × X as type-(0, 2) tensors on X . This motivates the definition

in Jeevanjee[1]:

De�nition 4 (Tensor product)
The tensor product X ⊗ Y is the subspace of B(X

∗ × Y
∗) spanned by

bilinear forms x ⊗ y , defined

(x ⊗ y)(f , g) := f (x)g(y) for each x ∈ X , y ∈ Y .

The definition in Ryan[6] looks subtly di�erent:

De�nition 5 (Tensor product)
The tensor product X ⊗ Y is the subspace of B(X × Y)∗ spanned by

functionals x ⊗ y , defined

(x ⊗ y)(F) := F (x, y), for each x ∈ X , y ∈ Y .

Dario Trinchero Exploring tensor products

12/20
Bilinear Form Definitions
Two ways!

Just as linear functionals are type-(0, 1) tensors, we can think of bilinear

forms on X × X as type-(0, 2) tensors on X . This motivates the definition

in Jeevanjee[1]:

De�nition 4 (Tensor product)
The tensor product X ⊗ Y is the subspace of B(X

∗ × Y
∗) spanned by

bilinear forms x ⊗ y , defined

(x ⊗ y)(f , g) := f (x)g(y) for each x ∈ X , y ∈ Y .

The definition in Ryan[6] looks subtly di�erent:

De�nition 5 (Tensor product)
The tensor product X ⊗ Y is the subspace of B(X × Y)∗ spanned by

functionals x ⊗ y , defined

(x ⊗ y)(F) := F (x, y), for each x ∈ X , y ∈ Y .

Dario Trinchero Exploring tensor products

13/20
Linearizing Bilinear Maps
Towards the universal property definition

Note (Linearizing bilinear forms)
Consider Ryan’s definition of x ⊗ y ∈ B(X × Y)∗:

bilinear form F : X × Y → C produces a linear functional

F̃ : X ⊗ Y → C, defined (on a basis) F̃ (x ⊗ y) := (x ⊗ y)(F) = F (x, y)

similarly, linear functional G : X ⊗ Y → C produces bilinear form

G̃ : X × Y → C, defined G̃(x, y) := G(x ⊗ y)

Hence B(X × Y) ∼= (X ⊗ Y)∗.

Note (Linearizing bilinear maps)
Similarly,

bilinear map A : X × Y → Z produces a linear map Ã : X ⊗ Y → Z ,
defined (on a basis) Ã(x ⊗ y) := A(x, y) (check well-definèdness!)

similarly, linear map B : X ⊗ Y → Z produces bilinear map

B̃ : X × Y → Z , defined B̃(x, y) := B(x ⊗ y)

Dario Trinchero Exploring tensor products

13/20
Linearizing Bilinear Maps
Towards the universal property definition

Note (Linearizing bilinear forms)
Consider Ryan’s definition of x ⊗ y ∈ B(X × Y)∗:

bilinear form F : X × Y → C produces a linear functional

F̃ : X ⊗ Y → C, defined (on a basis) F̃ (x ⊗ y) := (x ⊗ y)(F) = F (x, y)

similarly, linear functional G : X ⊗ Y → C produces bilinear form

G̃ : X × Y → C, defined G̃(x, y) := G(x ⊗ y)

Hence B(X × Y) ∼= (X ⊗ Y)∗.

Note (Linearizing bilinear maps)
Similarly,

bilinear map A : X × Y → Z produces a linear map Ã : X ⊗ Y → Z ,
defined (on a basis) Ã(x ⊗ y) := A(x, y) (check well-definèdness!)

similarly, linear map B : X ⊗ Y → Z produces bilinear map

B̃ : X × Y → Z , defined B̃(x, y) := B(x ⊗ y)

Dario Trinchero Exploring tensor products

13/20
Linearizing Bilinear Maps
Towards the universal property definition

Note (Linearizing bilinear forms)
Consider Ryan’s definition of x ⊗ y ∈ B(X × Y)∗:

bilinear form F : X × Y → C produces a linear functional

F̃ : X ⊗ Y → C, defined (on a basis) F̃ (x ⊗ y) := (x ⊗ y)(F) = F (x, y)

similarly, linear functional G : X ⊗ Y → C produces bilinear form

G̃ : X × Y → C, defined G̃(x, y) := G(x ⊗ y)

Hence B(X × Y) ∼= (X ⊗ Y)∗.

Note (Linearizing bilinear maps)
Similarly,

bilinear map A : X × Y → Z produces a linear map Ã : X ⊗ Y → Z ,
defined (on a basis) Ã(x ⊗ y) := A(x, y) (check well-definèdness!)

similarly, linear map B : X ⊗ Y → Z produces bilinear map

B̃ : X × Y → Z , defined B̃(x, y) := B(x ⊗ y)

Dario Trinchero Exploring tensor products

13/20
Linearizing Bilinear Maps
Towards the universal property definition

Note (Linearizing bilinear forms)
Consider Ryan’s definition of x ⊗ y ∈ B(X × Y)∗:

bilinear form F : X × Y → C produces a linear functional

F̃ : X ⊗ Y → C, defined (on a basis) F̃ (x ⊗ y) := (x ⊗ y)(F) = F (x, y)

similarly, linear functional G : X ⊗ Y → C produces bilinear form

G̃ : X × Y → C, defined G̃(x, y) := G(x ⊗ y)

Hence B(X × Y) ∼= (X ⊗ Y)∗.

Note (Linearizing bilinear maps)
Similarly,

bilinear map A : X × Y → Z produces a linear map Ã : X ⊗ Y → Z ,
defined (on a basis) Ã(x ⊗ y) := A(x, y) (check well-definèdness!)

similarly, linear map B : X ⊗ Y → Z produces bilinear map

B̃ : X × Y → Z , defined B̃(x, y) := B(x ⊗ y)

Dario Trinchero Exploring tensor products

13/20
Linearizing Bilinear Maps
Towards the universal property definition

Note (Linearizing bilinear forms)
Consider Ryan’s definition of x ⊗ y ∈ B(X × Y)∗:

bilinear form F : X × Y → C produces a linear functional

F̃ : X ⊗ Y → C, defined (on a basis) F̃ (x ⊗ y) := (x ⊗ y)(F) = F (x, y)

similarly, linear functional G : X ⊗ Y → C produces bilinear form

G̃ : X × Y → C, defined G̃(x, y) := G(x ⊗ y)

Hence B(X × Y) ∼= (X ⊗ Y)∗.

Note (Linearizing bilinear maps)
Similarly,

bilinear map A : X × Y → Z produces a linear map Ã : X ⊗ Y → Z ,
defined (on a basis) Ã(x ⊗ y) := A(x, y) (check well-definèdness!)

similarly, linear map B : X ⊗ Y → Z produces bilinear map

B̃ : X × Y → Z , defined B̃(x, y) := B(x ⊗ y)

Dario Trinchero Exploring tensor products

13/20
Linearizing Bilinear Maps
Towards the universal property definition

Note (Linearizing bilinear forms)
Consider Ryan’s definition of x ⊗ y ∈ B(X × Y)∗:

bilinear form F : X × Y → C produces a linear functional

F̃ : X ⊗ Y → C, defined (on a basis) F̃ (x ⊗ y) := (x ⊗ y)(F) = F (x, y)

similarly, linear functional G : X ⊗ Y → C produces bilinear form

G̃ : X × Y → C, defined G̃(x, y) := G(x ⊗ y)

Hence B(X × Y) ∼= (X ⊗ Y)∗.

Note (Linearizing bilinear maps)
Similarly,

bilinear map A : X × Y → Z produces a linear map Ã : X ⊗ Y → Z ,
defined (on a basis) Ã(x ⊗ y) := A(x, y) (check well-definèdness!)

similarly, linear map B : X ⊗ Y → Z produces bilinear map

B̃ : X × Y → Z , defined B̃(x, y) := B(x ⊗ y)

Dario Trinchero Exploring tensor products

13/20
Linearizing Bilinear Maps
Towards the universal property definition

Note (Linearizing bilinear forms)
Consider Ryan’s definition of x ⊗ y ∈ B(X × Y)∗:

bilinear form F : X × Y → C produces a linear functional

F̃ : X ⊗ Y → C, defined (on a basis) F̃ (x ⊗ y) := (x ⊗ y)(F) = F (x, y)

similarly, linear functional G : X ⊗ Y → C produces bilinear form

G̃ : X × Y → C, defined G̃(x, y) := G(x ⊗ y)

Hence B(X × Y) ∼= (X ⊗ Y)∗.

Note (Linearizing bilinear maps)
Similarly,

bilinear map A : X × Y → Z produces a linear map Ã : X ⊗ Y → Z ,
defined (on a basis) Ã(x ⊗ y) := A(x, y) (check well-definèdness!)

similarly, linear map B : X ⊗ Y → Z produces bilinear map

B̃ : X × Y → Z , defined B̃(x, y) := B(x ⊗ y)

Dario Trinchero Exploring tensor products

14/20 Linking our Definitions

Note (Linking via quotient space)
Both definitions are manifestly spanned by pairs x ⊗ y , and both produce

pairs bilinear in x & y . We can thus exhibit obvious isomorphisms from

each of them to F(X × Y)/ ∼, proving all 3 definitions isomorphic.

Alternatively, we can use the linearizing properties we showed. Use

subsript R for Ryan and J for Jeevanjee.

Note (Linking via linearization)
The map X × Y → B(X

∗ × Y
∗) : (x, y) 7→ x ⊗J y , with

(x ⊗J y)(f , g) := f (x)g(y), is manifestly bilinear. Hence there is unique

linear map l : X ⊗R Y → B(X
∗ × Y

∗), easily shown to be injective. So

X ⊗R Y embeds in B(X
∗ × Y

∗), & is isomorphic to the subspace spanned

by x ⊗J y .

Dario Trinchero Exploring tensor products

14/20 Linking our Definitions

Note (Linking via quotient space)
Both definitions are manifestly spanned by pairs x ⊗ y , and both produce

pairs bilinear in x & y . We can thus exhibit obvious isomorphisms from

each of them to F(X × Y)/ ∼, proving all 3 definitions isomorphic.

Alternatively, we can use the linearizing properties we showed. Use

subsript R for Ryan and J for Jeevanjee.

Note (Linking via linearization)
The map X × Y → B(X

∗ × Y
∗) : (x, y) 7→ x ⊗J y , with

(x ⊗J y)(f , g) := f (x)g(y), is manifestly bilinear. Hence there is unique

linear map l : X ⊗R Y → B(X
∗ × Y

∗), easily shown to be injective. So

X ⊗R Y embeds in B(X
∗ × Y

∗), & is isomorphic to the subspace spanned

by x ⊗J y .

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

More abstractly,

De�nition 6 (Tensor product)
The tensor product X ⊗ Y is the vector space and associated bilinear map

φ : X × Y → X ⊗ Y satisfying the following universal property:

For all ψ ∈ B(X×Y ,Z), there exists unique linear

h : X ⊗ Y → Z making the diagram commute:

X × Y

φ
//

ψ
$$

X ⊗ Y

h

��

Z

Write x ⊗ y := φ(x, y), for each x ∈ X , y ∈ Y .

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.
1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

More abstractly,

De�nition 6 (Tensor product)
The tensor product X ⊗ Y is the vector space and associated bilinear map

φ : X × Y → X ⊗ Y satisfying the following universal property:

For all ψ ∈ B(X×Y ,Z), there exists unique linear

h : X ⊗ Y → Z making the diagram commute:

X × Y

φ
//

ψ
$$

X ⊗ Y

h

��

Z

Write x ⊗ y := φ(x, y), for each x ∈ X , y ∈ Y .

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.
1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

More abstractly,

De�nition 6 (Tensor product)
The tensor product X ⊗ Y is the vector space and associated bilinear map

φ : X × Y → X ⊗ Y satisfying the following universal property:

For all ψ ∈ B(X×Y ,Z), there exists unique linear

h : X ⊗ Y → Z making the diagram commute:

X × Y

φ
//

ψ
$$

X ⊗ Y

h

��

Z

Write x ⊗ y := φ(x, y), for each x ∈ X , y ∈ Y .

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.
1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

More abstractly,

De�nition 6 (Tensor product)
The tensor product X ⊗ Y is the vector space and associated bilinear map

φ : X × Y → X ⊗ Y satisfying the following universal property:

For all ψ ∈ B(X×Y ,Z), there exists unique linear

h : X ⊗ Y → Z making the diagram commute:

X × Y

φ
//

ψ
$$

X ⊗ Y

h

��

Z

Write x ⊗ y := φ(x, y), for each x ∈ X , y ∈ Y .

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.

1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

More abstractly,

De�nition 6 (Tensor product)
The tensor product X ⊗ Y is the vector space and associated bilinear map

φ : X × Y → X ⊗ Y satisfying the following universal property:

For all ψ ∈ B(X×Y ,Z), there exists unique linear

h : X ⊗ Y → Z making the diagram commute:

X × Y

φ
//

ψ
$$

X ⊗ Y

h

��

Z

Write x ⊗ y := φ(x, y), for each x ∈ X , y ∈ Y .

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.
1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.
1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

2 Consider the diagram:

X ⊗ Y

h

X × Y

φ 99

ω %%
Ω

g

II

3 h, g are unique linear maps given by the univeral property making the

diagram commute; i.e. h ◦ φ = ω, g ◦ ω = φ.

4 Then g ◦ h ◦ φ = φ, so g ◦ h = 1 on φ(X × Y), and hence on its span,

X ⊗ Y . Similarly, h ◦ g = 1 on Ω, so h
−1 = g. �

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.
1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

2 Consider the diagram:

X ⊗ Y

h

X × Y

φ 99

ω %%
Ω

g

II

3 h, g are unique linear maps given by the univeral property making the

diagram commute; i.e. h ◦ φ = ω, g ◦ ω = φ.

4 Then g ◦ h ◦ φ = φ, so g ◦ h = 1 on φ(X × Y), and hence on its span,

X ⊗ Y . Similarly, h ◦ g = 1 on Ω, so h
−1 = g. �

Dario Trinchero Exploring tensor products

15/20
Universal Property Definition
Unifying all prior definitions

Lemma (Uniqueness of X ⊗ Y)
X ⊗ Y is uniquely defined, up to isomorphism, by the above.

Proof.
1 Suppose vector space Ω and bilinear map ω : X × Y → Ω satisfy the

universal property.

2 Consider the diagram:

X ⊗ Y

h

X × Y

φ 99

ω %%
Ω

g

II

3 h, g are unique linear maps given by the univeral property making the

diagram commute; i.e. h ◦ φ = ω, g ◦ ω = φ.

4 Then g ◦ h ◦ φ = φ, so g ◦ h = 1 on φ(X × Y), and hence on its span,

X ⊗ Y . Similarly, h ◦ g = 1 on Ω, so h
−1 = g. �

Dario Trinchero Exploring tensor products

16/20
The Definition of Lang
Briefly wandering out of scope

Lang[3] defines the tensor product thusly:

De�nition 6 (Tensor product)
For fixed X ,Y , define a category with

objects all bilinear maps defined on X × Y

morphisms φ→ ψ all linear maps h making the

following commute:

Z

h

��

X × Y

φ
;;

ψ ##

Z
′

The tensor product X ⊗ Y is an initial object in this category.

Remarks

simple rewriting of the last definition in di�erent language

(identifying X ⊗ Y with multilinear map X × Y → X ⊗ Y)

harkens to connection between universal arrows & universal objects

in some comma category

Dario Trinchero Exploring tensor products

16/20
The Definition of Lang
Briefly wandering out of scope

Lang[3] defines the tensor product thusly:

De�nition 6 (Tensor product)
For fixed X ,Y , define a category with

objects all bilinear maps defined on X × Y

morphisms φ→ ψ all linear maps h making the

following commute:

Z

h

��

X × Y

φ
;;

ψ ##

Z
′

The tensor product X ⊗ Y is an initial object in this category.

Remarks

simple rewriting of the last definition in di�erent language

(identifying X ⊗ Y with multilinear map X × Y → X ⊗ Y)

harkens to connection between universal arrows & universal objects

in some comma category

Dario Trinchero Exploring tensor products

16/20
The Definition of Lang
Briefly wandering out of scope

Lang[3] defines the tensor product thusly:

De�nition 6 (Tensor product)
For fixed X ,Y , define a category with

objects all bilinear maps defined on X × Y

morphisms φ→ ψ all linear maps h making the

following commute:

Z

h

��

X × Y

φ
;;

ψ ##

Z
′

The tensor product X ⊗ Y is an initial object in this category.

Remarks

simple rewriting of the last definition in di�erent language

(identifying X ⊗ Y with multilinear map X × Y → X ⊗ Y)

harkens to connection between universal arrows & universal objects

in some comma category

Dario Trinchero Exploring tensor products

16/20
The Definition of Lang
Briefly wandering out of scope

Lang[3] defines the tensor product thusly:

De�nition 6 (Tensor product)
For fixed X ,Y , define a category with

objects all bilinear maps defined on X × Y

morphisms φ→ ψ all linear maps h making the

following commute:

Z

h

��

X × Y

φ
;;

ψ ##

Z
′

The tensor product X ⊗ Y is an initial object in this category.

Remarks

simple rewriting of the last definition in di�erent language

(identifying X ⊗ Y with multilinear map X × Y → X ⊗ Y)

harkens to connection between universal arrows & universal objects

in some comma category

Dario Trinchero Exploring tensor products

16/20
The Definition of Lang
Briefly wandering out of scope

Lang[3] defines the tensor product thusly:

De�nition 6 (Tensor product)
For fixed X ,Y , define a category with

objects all bilinear maps defined on X × Y

morphisms φ→ ψ all linear maps h making the

following commute:

Z

h

��

X × Y

φ
;;

ψ ##

Z
′

The tensor product X ⊗ Y is an initial object in this category.

Remarks
simple rewriting of the last definition in di�erent language

(identifying X ⊗ Y with multilinear map X × Y → X ⊗ Y)

harkens to connection between universal arrows & universal objects

in some comma category

Dario Trinchero Exploring tensor products

16/20
The Definition of Lang
Briefly wandering out of scope

Lang[3] defines the tensor product thusly:

De�nition 6 (Tensor product)
For fixed X ,Y , define a category with

objects all bilinear maps defined on X × Y

morphisms φ→ ψ all linear maps h making the

following commute:

Z

h

��

X × Y

φ
;;

ψ ##

Z
′

The tensor product X ⊗ Y is an initial object in this category.

Remarks
simple rewriting of the last definition in di�erent language

(identifying X ⊗ Y with multilinear map X × Y → X ⊗ Y)

harkens to connection between universal arrows & universal objects

in some comma category

Dario Trinchero Exploring tensor products

17/20 Tensor-Hom Adjunction

Notation
Write Hom(X ,Y) for the set of linear maps X → Y . We abuse notation by

interpreting Hom(X ,Y) as a vector space when convenient.

Note (Currying bilinear maps)
We can think of a bilinear map φ ∈ B(X × Y ,Z) instead as a linear map

φ′ : X → Hom(Y ,Z) : x 7→ (y 7→ φ(x, y)). In this way, we identify

B(X × Y ,Z) with Hom(X ,Hom(Y ,Z)).

We can now succinctly formulate the linearizing property of X ⊗ Y :

Theorem 7 (Tensor-hom adjunction)
Hom(X ,Hom(Y ,Z)) ∼= Hom(X ⊗ Y ,Z).
We say the tensor product −⊗ Y is left-adjoint to the internal hom functor

Hom(Y ,−).

Dario Trinchero Exploring tensor products

17/20 Tensor-Hom Adjunction

Notation
Write Hom(X ,Y) for the set of linear maps X → Y . We abuse notation by

interpreting Hom(X ,Y) as a vector space when convenient.

Note (Currying bilinear maps)
We can think of a bilinear map φ ∈ B(X × Y ,Z) instead as a linear map

φ′ : X → Hom(Y ,Z) : x 7→ (y 7→ φ(x, y)). In this way, we identify

B(X × Y ,Z) with Hom(X ,Hom(Y ,Z)).

We can now succinctly formulate the linearizing property of X ⊗ Y :

Theorem 7 (Tensor-hom adjunction)
Hom(X ,Hom(Y ,Z)) ∼= Hom(X ⊗ Y ,Z).
We say the tensor product −⊗ Y is left-adjoint to the internal hom functor

Hom(Y ,−).

Dario Trinchero Exploring tensor products

17/20 Tensor-Hom Adjunction

Notation
Write Hom(X ,Y) for the set of linear maps X → Y . We abuse notation by

interpreting Hom(X ,Y) as a vector space when convenient.

Note (Currying bilinear maps)
We can think of a bilinear map φ ∈ B(X × Y ,Z) instead as a linear map

φ′ : X → Hom(Y ,Z) : x 7→ (y 7→ φ(x, y)). In this way, we identify

B(X × Y ,Z) with Hom(X ,Hom(Y ,Z)).

We can now succinctly formulate the linearizing property of X ⊗ Y :

Theorem 7 (Tensor-hom adjunction)
Hom(X ,Hom(Y ,Z)) ∼= Hom(X ⊗ Y ,Z).
We say the tensor product −⊗ Y is left-adjoint to the internal hom functor

Hom(Y ,−).

Dario Trinchero Exploring tensor products

18/20
Tensors in Physics
Classical, quantum & relativistic!

Example (Cauchy stress tensor)
A common first-encounter with tensors is the Cauchy stress tensor in

classical mechanics. For direction vector n ∈ R3
, the 9-component stress

tensor σij gives the traction vector: T
(n)
j

= σijni.

Example (Tensor product states)
In quantum mechanics, the set of states of a system is given by a Hilbert

space. The two systems taken together have Hilbert space the tensor

product of the individual systems’ Hilbert spaces.

Entanglement arises precisely because not all tensors in this product are

elementary.

Dario Trinchero Exploring tensor products

18/20
Tensors in Physics
Classical, quantum & relativistic!

Example (Cauchy stress tensor)
A common first-encounter with tensors is the Cauchy stress tensor in

classical mechanics. For direction vector n ∈ R3
, the 9-component stress

tensor σij gives the traction vector: T
(n)
j

= σijni.

Example (Tensor product states)
In quantum mechanics, the set of states of a system is given by a Hilbert

space. The two systems taken together have Hilbert space the tensor

product of the individual systems’ Hilbert spaces.

Entanglement arises precisely because not all tensors in this product are

elementary.

Dario Trinchero Exploring tensor products

19/20
Summary & Conclusion
What we have shown

The key takeaway of the talk is:

Multilinear maps on the Cartesian product correspond to linear

maps on the tensor product.

This is succinctly captured by the tensor-hom adjunction:

Hom (X ,Hom (Y ,Z)) ∼= Hom (X ⊗ Y ,Z).

We saw some examples of tensors, including from physics.

Dario Trinchero Exploring tensor products

19/20
Summary & Conclusion
What we have shown

The key takeaway of the talk is:

Multilinear maps on the Cartesian product correspond to linear

maps on the tensor product.

This is succinctly captured by the tensor-hom adjunction:

Hom (X ,Hom (Y ,Z)) ∼= Hom (X ⊗ Y ,Z).

We saw some examples of tensors, including from physics.

Dario Trinchero Exploring tensor products

19/20
Summary & Conclusion
What we have shown

The key takeaway of the talk is:

Multilinear maps on the Cartesian product correspond to linear

maps on the tensor product.

This is succinctly captured by the tensor-hom adjunction:

Hom (X ,Hom (Y ,Z)) ∼= Hom (X ⊗ Y ,Z).

We saw some examples of tensors, including from physics.

Dario Trinchero Exploring tensor products

20/20 References

Jeevanjee, Nadir. An introduction to tensors and group theory for

physicists. Birkhäuser, 2011.

Johannesen, Steinar. Smooth manifolds and fibre bundles with

applications to theoretical physics. CRC Press, 2016.

Lang, Serge. Algebra. Springer New York, 2002.

Mac Lane, Saunders. Categories for the working mathematician. Vol. 5.

Springer Science & Business Media, 2013.

Poole, David. Linear algebra: A modern introduction. Cengage

Learning, 2014.

Ryan, Raymond A. Introduction to tensor products of Banach spaces.

Springer Science & Business Media, 2013.

Schouten, Jan Arnoldus. Tensor analysis for physicists. Courier

Corporation, 1989.

Dario Trinchero Exploring tensor products

