Dario Trinchero

dario.trinchero@pm.me

PG Seminar: **Tour of Knots & Theta Functions**

Introduction to abelian Chern-Simons theory

Stellenbosch University

October 2023

Talk Outline

1 Setup

- Motivation & goal
- Basic notation
- 2 BACKGROUND theory
 - Geometric quantization
 - Homology of surfaces

3 THETA FUNCTIONS

- Jacobian variety
- Theta functions from quantization
- Quantized observables

4 Skeins

- Definitions of skein modules
- Skein algebra actions

5 The **ISOMORPHISM**

Main results

6 SUMMARY

Goal

Establish isomorphism:

$$\left\{\begin{array}{l} \text{space of THETA FUNCTIONS} \\ \text{associated with SURFACE} \end{array}\right\} \cong \left\{\begin{array}{l} \text{space of SKEINS in} \\ \text{enclosed HANDLEBODY} \end{array}\right\}$$

Motivation & goal

.

Goal

Establish isomorphism:

$$\left\{\begin{array}{l} \text{space of THETA FUNCTIONS} \\ \text{associated with SURFACE} \end{array}\right\} \cong \left\{\begin{array}{l} \text{space of SKEINS in} \\ \text{enclosed HANDLEBODY} \end{array}\right\}$$

Motivation

- These spaces are central to Chern-Simons theory
- My PhD is about improving this isomorphism

• $\Sigma_g \longrightarrow \text{genus-}g \text{Riemann surface}$

• $\Sigma_{g,n} \longrightarrow$ genus-g Riemann surface with *n* boundary elements

- $\Sigma_{g,n} \longrightarrow$ genus-g Riemann surface with *n* boundary elements
- $H_g \longrightarrow \text{genus-}g \text{ handlebody}$

- $\Sigma_{g,n} \longrightarrow$ genus-g Riemann surface with *n* boundary elements
- $H_g \longrightarrow \text{genus-}g \text{ HANDLEBODY}$

Notation (Symplectic mfds)

For symp MFD (M, ω) , and $f, g \in C^{\infty}(M, \mathbb{R})$, we have

- $\Sigma_{g,n} \longrightarrow$ genus-g Riemann surface with *n* boundary elements
- $H_g \longrightarrow \text{genus-}g \text{ HANDLEBODY}$

Notation (Symplectic mfds)

For SYMP MFD (M, ω) , and $f, g \in C^{\infty}(M, \mathbb{R})$, we have

• $X_f \longrightarrow \text{Hamiltonian vec field:} \omega(X_f, \cdot) = -df(\cdot)$

- $\Sigma_{g,n} \longrightarrow$ genus-g Riemann surface with *n* boundary elements
- $H_g \longrightarrow \text{genus-}g \text{ HANDLEBODY}$

Notation (Symplectic mfds)

For symp MFD (M, ω) , and $f, g \in C^{\infty}(M, \mathbb{R})$, we have

■
$$X_f \longrightarrow$$
 Hamiltonian vec field: $\omega(X_f, \cdot) = -df(\cdot)$
■ $\{f, g\} \longrightarrow$ Poisson bracket: $\{f, g\} := \omega(X_f, X_g)$

Definition (Quantization)

Quantization means replacing

Definition (Quantization)Quantization means replacingI { classical PHASE SPACE } \parallel \parallel

Definition (Quantization) Quantization means replacing $\left\{ \begin{array}{c} \text{classical PHASE SPACE} \\ \parallel \\ \text{symp mfd} (M, \omega) \end{array} \xrightarrow{} \left\{ \begin{array}{c} \text{QUANTUM STATE space} \\ \parallel \\ \text{Hilbert space } \mathcal{H} \end{array} \right\}$ $\left\{ \begin{array}{c} \text{classical OBSERVABLES} \\ \parallel \\ \text{funcs } f \in C^{\infty}(M, \mathbb{R}) \end{array} \xrightarrow{} \left\{ \begin{array}{c} \text{quantum OBSERVABLES} \\ \parallel \\ \text{Hermitian ops op}(f) \end{array} \right\}$

Definition (Quantization) Quantization means replacing $\left\{ \text{ classical PHASE SPACE } \right\} \leftrightarrow \left\{ \text{ QUANTUM STATE space } \right\}$ $\| \|_{\text{symp mfd } (M, \omega)} \qquad \| \|_{\text{Hilbert space } \mathcal{H}}$ $\left\{ \text{ classical OBSERVABLES } \right\} \leftrightarrow \left\{ \text{ quantum OBSERVABLES} \right\}$

2 $\{ \text{classical OBSERVABLES} \} \rightsquigarrow \{ \text{quantum OBSERVABLES} \}$ \parallel $\text{funcs } f \in C^{\infty}(M, \mathbb{R})$ Hermitian ops op(f)

while respecting **DIRAC's CONDITIONS**:

1 $op(1) = id_{\mathcal{H}}$

Definition (Quantization) Quantization means replacing $\left\{ \text{ classical PHASE SPACE } \right\} \leftrightarrow \left\{ \begin{array}{c} \text{QUANTUM STATE space } \\ \parallel \\ \text{symp mfd } (M, \omega) \end{array} \right\} \left\{ \begin{array}{c} \text{Ill} \\ \text{Hilbert space } \mathcal{H} \end{array} \right\}$ $\left\{ \begin{array}{c} \text{classical OBSERVABLES } \\ \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \text{quantum OBSERVABLES } \end{array} \right\}$

funcs $f \in C^{\infty}(M, \mathbb{R})$ Hermitian ops op(f)

while respecting **DIRAC's CONDITIONS**:

op(1) = id_H
 op(⋅) is LINEAR

Definition (Quantization)

Quantization means replacing

1 $\{$ classical phase space $\} \rightarrow \{$ $\{$ QUANTUM STATE space $\}$ symp mfd (M,ω) Hilbert space \mathcal{H}

Hermitian ops op(f)

2 $\{$ classical OBSERVABLES $\} \rightarrow \{$ quantum OBSERVABLES $\}$ funcs $f \in C^{\infty}(M,\mathbb{R})$

while respecting **DIRAC'S CONDITIONS**:

1 op(1) = $\operatorname{id}_{\mathcal{H}}$

2 $op(\cdot)$ is LINEAR

3 observable rep is **IRREDUCIBLE** on \mathcal{H}

Definition (Quantization)

Quantization means replacing

Image: Classical PHASE SPACE \rightsquigarrow {QUANTUM STATE space }Image: Symp mfd (M, ω)Image: Symm mfd (M, ω)

while respecting **DIRAC's CONDITIONS**:

1 $op(1) = id_{\mathcal{H}}$

2 op (\cdot) is linear

- **3** observable rep is **IRREDUCIBLE** on \mathcal{H}

Given 2n-DIM symp mfd (M, ω),

1 a "complex distribution" **F** is a subbundle of $TM \otimes \mathbb{C}$

Given 2*n*-DIM symp mfd (M, ω),

- **1** a "complex distribution" **F** is a subbundle of $TM \otimes \mathbb{C}$
- **2** $\&^2 \quad \omega|_{F \times F} = 0 \qquad \longrightarrow$ "involutive" dist

Given 2*n*-DIM symp mfd (M, ω),

1 a "complex distribution" **F** is a subbundle of $TM \otimes \mathbb{C}$

2 $\&^2 \quad \omega|_{F \times F} = 0 \qquad \longrightarrow$ "involutive" dist

3
$$\&^3$$
 dim _{\mathbb{C}} $F = \frac{1}{2}$ dim _{\mathbb{R}} M \longrightarrow "Lagrangian" dist

Given 2*n*-DIM symp mfd (M, ω),

1 a "complex distribution" **F** is a subbundle of $TM \otimes \mathbb{C}$

2
$$\&^2 \quad \omega|_{F \times F} = 0 \qquad \longrightarrow \quad \text{``involutive'' dist}$$

3
$$\&^3$$
 dim _{\mathbb{C}} $F = \frac{1}{2}$ dim _{\mathbb{R}} M \longrightarrow "Lagrangian" dist

4
$$\mathcal{E}^4 \quad p \mapsto \dim(\mathcal{F}_p \cap \overline{\mathcal{F}}_p)$$
 constant on $M \longrightarrow \text{``POLARIZATION''}$

Given 2*n*-DIM symp mfd (M, ω),

1 a "complex distribution" **F** is a subbundle of $TM \otimes \mathbb{C}$

2
$$\&^2 \quad \omega|_{F \times F} = 0 \qquad \longrightarrow \quad \text{``involutive'' dist}$$

3 $\&^3$ dim_C $F = \frac{1}{2}$ dim_R M \longrightarrow "Lagrangian" dist

4
$$p \mapsto \dim(\mathbf{F}_p \cap \overline{\mathbf{F}}_p)$$
 constant on $M \longrightarrow$ "POLARIZATION"

5 **&**⁵

• $F = \overline{F}$ \longrightarrow "real" polarization

Given 2*n*-DIM symp mfd (M, ω),

- **1** a "complex distribution" **F** is a subbundle of $TM \otimes \mathbb{C}$
- **2** $\&^2 \quad \omega|_{F \times F} = 0 \qquad \longrightarrow$ "involutive" dist
- **3** $\&^3$ dim_C $F = \frac{1}{2}$ dim_R M \longrightarrow "Lagrangian" dist
- **4** $p \mapsto \dim(\mathbf{F}_p \cap \overline{\mathbf{F}}_p)$ constant on $M \longrightarrow$ "POLARIZATION"

5 **&**⁵

- $F = \overline{F}$ \longrightarrow "real" polarization
- $F \cap \overline{F} = 0$ \longrightarrow "Kähler" polarization

Example (Kähler polarization)

Take $M = \mathbb{R}^n \times \mathbb{R}^n$, as for a *n* particles in 1D.

Writing $z_j = x_j + iy_j$, consider

$$\frac{\partial}{\partial \overline{z}_j} = \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) \quad \in \ T(\mathbb{R}^n \times \mathbb{R}^n) \otimes \mathbb{C}.$$

The polarization

$$\boldsymbol{F} := \operatorname{span}\left\{\frac{\partial}{\partial \overline{z}_1}, \frac{\partial}{\partial \overline{z}_2}, \dots, \frac{\partial}{\partial \overline{z}_n}\right\}$$

is Kähler.

Fix 2n-dim symp MFD (M, ω) & polarization **F** of *M*.

Fix 2n-dim symp MFD (M, ω) & polarization **F** of *M*.

The Hilbert space
Define
$$\mathcal{H} := \left\{ M \xrightarrow{s} \mathcal{L} \mid \forall v \in F : \nabla_v s = 0 \right\}$$
, where

\mathbb{S}

Fix 2n-dim symp MFD (M, ω) & polarization **F** of *M*.

The Hilbert space

Define
$$\mathcal{H} \coloneqq \left\{ \mathcal{M} \xrightarrow{s} \mathcal{L} \mid \forall \boldsymbol{v} \in \boldsymbol{F} : \nabla_{\boldsymbol{v}} s = 0 \right\}$$
, where

\mathcal{L} = HERMITIAN LINE BUNDLE \leftarrow fibrewise inner product $\langle \cdot, \cdot \rangle$

\mathbb{S}

Fix 2n-dim symp MFD (M, ω) & polarization **F** of *M*.

The Hilbert space

Define
$$\mathcal{H} \coloneqq \left\{ M \xrightarrow{s} \mathcal{L} \mid \forall \boldsymbol{v} \in \boldsymbol{F} : \nabla_{\boldsymbol{v}} s = 0 \right\}$$
, where

- **\mathcal{L} = HERMITIAN LINE BUNDLE** \leftarrow fibrewise inner product $\langle \cdot, \cdot \rangle$
- with compatible connection* $\nabla \leftarrow d\langle s,t \rangle = \langle \nabla s,t \rangle + \langle s,\nabla t \rangle$

\mathbb{S}

Fix 2n-dim symp MFD (M, ω) & polarization **F** of *M*.

The Hilbert space

Define
$$\mathcal{H} \coloneqq \left\{ M \xrightarrow{s} \mathcal{L} \ \middle| \ \forall \boldsymbol{v} \in \boldsymbol{F} : \nabla_{\boldsymbol{v}} s = 0 \right\}$$
, where

- **\mathcal{L} = HERMITIAN LINE BUNDLE** \leftarrow fibrewise inner product $\langle \cdot, \cdot \rangle$
- with compatible connection* $\nabla \leftarrow d\langle s,t \rangle = \langle \nabla s,t \rangle + \langle s,\nabla t \rangle$
- with curvature ω/\hbar . $\leftarrow d\theta = \omega/\hbar$ where locally $\nabla = d i\theta$

Fix 2n-dim symp MFD (M, ω) & polarization **F** of *M*.

The Hilbert space

Define
$$\mathcal{H} \coloneqq \left\{ M \xrightarrow{s} \mathcal{L} \mid \forall \boldsymbol{v} \in \boldsymbol{F} : \nabla_{\boldsymbol{v}} s = 0 \right\}$$
, where

- **\mathcal{L} = HERMITIAN LINE BUNDLE** \leftarrow fibrewise inner product $\langle \cdot, \cdot \rangle$
- with compatible connection* $\nabla \leftarrow d\langle s,t \rangle = \langle \nabla s,t \rangle + \langle s,\nabla t \rangle$
- with curvature ω/\hbar . $\leftarrow d\theta = \omega/\hbar$ where locally $\nabla = d i\theta$

Define INNER PRODUCT
$$\langle s, t \rangle := \int_{M/(F \cap \overline{F})} \langle s(p), t(p) \rangle d \operatorname{vol}_{M/(F \cap \overline{F})}$$

Theorem (Weil's integrality condition)

 \mathcal{L} exists iff $\omega/(2\pi\hbar)\in H^2(M,\mathbb{Z}).$

Theorem (Weil's integrality condition)

 \mathcal{L} exists iff $\omega/(2\pi\hbar) \in H^2(M,\mathbb{Z}).$

The observables

For $s \in \mathcal{H}, f \in C^{\infty}(M, \mathbb{R})$, define

$$\operatorname{op}(f) s \coloneqq -i\hbar \nabla_{X_f} s + f \cdot s,$$

which satisfies **DIRAC'S CONDITIONS**.

Definition (Intersection form)

Define the "intersection form" \cdot : $H_1(\Sigma_g, \mathbb{Z}) \times H_1(\Sigma_g, \mathbb{Z}) \to \mathbb{Z}$ as follows

Definition (Intersection form)

Define the "intersection form" $\cdot : H_1(\Sigma_g, \mathbb{Z}) \times H_1(\Sigma_g, \mathbb{Z}) \to \mathbb{Z}$ as follows

1 represent homology classes by <u>oriented multicurves</u> γ_1, γ_2 with finite set \mathscr{I} of <u>transverse intersections</u>

Definition (Intersection form)

Define the "intersection form" $\cdot : H_1(\Sigma_g, \mathbb{Z}) \times H_1(\Sigma_g, \mathbb{Z}) \to \mathbb{Z}$ as follows

- **1** represent homology classes by <u>oriented multicurves</u> γ_1, γ_2 with finite set \mathscr{I} of <u>transverse intersections</u>
- 2 $\gamma_1 \cdot \gamma_2 := \sum_{\mathscr{I}} \sigma$, with $\sigma = \pm 1$ depending whether frame (γ'_1, γ'_2) AGREES WITH ORIENTATION ON Σ_g

Definition (Intersection form)

Define the "intersection form" \cdot : $H_1(\Sigma_g, \mathbb{Z}) \times H_1(\Sigma_g, \mathbb{Z}) \to \mathbb{Z}$ as follows

- **1** represent homology classes by <u>oriented multicurves</u> γ_1, γ_2 with finite set \mathscr{I} of <u>transverse intersections</u>
- 2 $\gamma_1 \cdot \gamma_2 := \sum_{\mathscr{I}} \sigma$, with $\sigma = \pm 1$ depending whether frame (γ'_1, γ'_2) AGREES WITH ORIENTATION ON Σ_g

Definition (Canonical basis)

A "canonical basis" comprises ORIENTED SMOOTH SIMPLE CLOSED curves $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$ with $a_j \cdot a_k = b_j \cdot b_k = 0, a_j \cdot b_k = \delta_{j,k}$.

Definition (Intersection form)

Define the "intersection form" \cdot : $H_1(\Sigma_g, \mathbb{Z}) \times H_1(\Sigma_g, \mathbb{Z}) \to \mathbb{Z}$ as follows

- **1** represent homology classes by <u>oriented multicurves</u> γ_1, γ_2 with finite set \mathscr{I} of <u>transverse intersections</u>
- 2 $\gamma_1 \cdot \gamma_2 := \sum_{\mathscr{I}} \sigma$, with $\sigma = \pm 1$ depending whether frame (γ'_1, γ'_2) AGREES WITH ORIENTATION ON Σ_g

Definition (Canonical basis)

A "canonical basis" comprises ORIENTED SMOOTH SIMPLE CLOSED curves $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$ with $a_j \cdot a_k = b_j \cdot b_k = 0, a_j \cdot b_k = \delta_{j,k}$.

eg.

$$\left\{\begin{array}{l} \text{space of THETA FUNCTIONS} \\ \text{associated with SURFACE} \end{array}\right\} \cong \left\{\begin{array}{l} \text{space of SKEINS in} \\ \text{enclosed HANDLEBODY} \end{array}\right\}.$$

 $\left\{\begin{array}{l} \text{space of THETA FUNCTIONS} \\ \text{associated with SURFACE} \end{array}\right\} \cong \left\{\begin{array}{l} \text{space of SKEINS in} \\ \text{enclosed HANDLEBODY} \end{array}\right\}.$

we now focus here

The construction has 2 **STEPS**:

Σg

The construction has 2 STEPS:

The construction has 2 STEPS:

Fix a canonical basis,
$$a_1, \ldots, a_g, b_1, \ldots, b_g$$
 of $H_1(\Sigma_g, \mathbb{Z})$.

 $\exists ! \text{ basis } \zeta_1, \dots, \zeta_g \text{ of the space } \mathscr{H}(\Sigma_g) \text{ of HOLOMORPHIC 1-FORMS st}$

$$\int_{a_j} \zeta_k = \delta_{jk}.$$

Fix a canonical basis,
$$a_1, \ldots, a_g, b_1, \ldots, b_g$$
 of $H_1(\Sigma_g, \mathbb{Z})$.

 $\exists ! \text{ basis } \zeta_1, \dots, \zeta_g \text{ of the space } \mathscr{H}(\Sigma_g) \text{ of HOLOMORPHIC 1-FORMS st}$

$$\int_{a_j} \zeta_k = \delta_{jk}.$$

Definition (Jacobian variety)

1 "period matrix"
$$\longrightarrow$$
 $(\mathbf{1} \mid \Pi)$, for $\Pi = (\pi_{jk}), \pi_{jk} \coloneqq \int_{b_j} \zeta_k$

Fix a canonical basis,
$$a_1, \ldots, a_g, b_1, \ldots, b_g$$
 of $H_1(\Sigma_g, \mathbb{Z})$.

 $\exists ! \text{ basis } \zeta_1, \ldots, \zeta_g \text{ of the space } \mathscr{H}(\Sigma_g) \text{ of } \text{ holomorphic 1-forms st}$

$$\int_{a_j} \zeta_k = \delta_{jk}.$$

Definition (Jacobian variety)

- **1** "period matrix" $\longrightarrow (\mathbf{1} \mid \Pi)$, for $\Pi = (\pi_{jk}), \pi_{jk} \coloneqq \int_{h} \zeta_k$
- **2** "period lattice" $\longrightarrow \Lambda(1,\Pi)$, spanned by matrix cols

Fix a canonical basis,
$$a_1, \ldots, a_g, b_1, \ldots, b_g$$
 of $H_1(\Sigma_g, \mathbb{Z})$.

 $\exists ! \text{ basis } \zeta_1, \dots, \zeta_g \text{ of the space } \mathscr{H}(\Sigma_g) \text{ of HOLOMORPHIC 1-FORMS st}$

$$\int_{a_j} \zeta_k = \delta_{jk}.$$

Definition (Jacobian variety)

- **1** "period matrix" \longrightarrow $(\mathbf{1} \mid \Pi)$, for $\Pi = (\pi_{jk}), \pi_{jk} \coloneqq \int_{h_i} \zeta_k$
- **2** "period lattice" $\longrightarrow \Lambda(1,\Pi)$, spanned by matrix cols
- $\texttt{3} \quad \texttt{`Jacobian variety''} \quad \longrightarrow \quad \mathcal{J}(\Sigma_g) \coloneqq \mathbb{C}^g / \Lambda(1, \Pi).$

 $\mathcal{J}(\Sigma_g)$ inherits REAL & COMPLEX COORDINATES from $\mathscr{H}(\Sigma_g)^*$ as follows:

 $\mathcal{J}(\Sigma_g)$ inherits REAL & COMPLEX COORDINATES from $\mathscr{H}(\Sigma_g)^*$ as follows:

 $\mathcal{J}(\Sigma_g)$ inherits REAL & COMPLEX COORDINATES from $\mathscr{H}(\Sigma_g)^*$ as follows:

- **2** $\mathscr{H}(\Sigma_g)^* \cong \mathbb{R}^{2g} \quad \longleftarrow \quad \text{basis } \mathcal{B}: \quad \zeta \mapsto \int_{a_j} \zeta, \ \zeta \mapsto \int_{b_j} \zeta$

 $\mathcal{J}(\Sigma_g)$ inherits REAL & COMPLEX COORDINATES from $\mathscr{H}(\Sigma_g)^*$ as follows:

- 1 $\mathscr{H}(\Sigma_g)^* \cong \mathbb{C}^g \quad \longleftarrow \quad \text{dual basis } \zeta_j^*$
- **2** $\mathscr{H}(\Sigma_g)^* \cong \mathbb{R}^{2g} \quad \longleftarrow \quad \text{basis } \mathcal{B}: \quad \zeta \mapsto \int_{a_j} \zeta, \ \zeta \mapsto \int_{b_j} \zeta$

Factor each by $\Lambda(\mathcal{B})$ to view $\mathcal{J}(\Sigma_g)$ as a complex (resp real) mfd. The coords are related by $z = x + \Pi y$.

 $\mathcal{J}(\Sigma_g)$ inherits REAL \mathscr{O} COMPLEX COORDINATES from $\mathscr{H}(\Sigma_g)^*$ as follows:

- **2** $\mathscr{H}(\Sigma_g)^* \cong \mathbb{R}^{2g} \quad \longleftarrow \quad \text{basis } \mathcal{B}: \quad \zeta \mapsto \int_{a_j} \zeta, \ \zeta \mapsto \int_{b_j} \zeta$

Factor each by $\Lambda(\mathcal{B})$ to view $\mathcal{J}(\Sigma_g)$ as a complex (resp real) mfd. The coords are related by $z = x + \Pi y$.

Classical mechanics on Jacobian variety

1 SYMPLECTIC FORM $\longrightarrow \omega = (d\mathbf{x})^T \wedge d\mathbf{y}$

 $\mathcal{J}(\Sigma_g)$ inherits REAL \mathscr{O} COMPLEX COORDINATES from $\mathscr{H}(\Sigma_g)^*$ as follows:

1 $\mathscr{H}(\Sigma_g)^* \cong \mathbb{C}^g \quad \longleftarrow \quad \text{dual basis } \zeta_j^*$

2
$$\mathscr{H}(\Sigma_g)^* \cong \mathbb{R}^{2g} \quad \longleftarrow \quad \text{basis } \mathcal{B}: \quad \zeta \mapsto \int_{a_j} \zeta, \ \zeta \mapsto \int_{b_j} \zeta$$

Factor each by $\Lambda(\mathcal{B})$ to view $\mathcal{J}(\Sigma_g)$ as a complex (resp real) mfd. The coords are related by $z = x + \Pi y$.

Classical mechanics on Jacobian variety

1 SYMPLECTIC FORM $\longrightarrow \omega = (d\mathbf{x})^T \wedge d\mathbf{y}$

2 classical OBSERVABLES \longrightarrow generated by $\exp(2\pi i(\boldsymbol{p}^T \boldsymbol{x} + \boldsymbol{q}^T \boldsymbol{y}))$, for $(\boldsymbol{p}, \boldsymbol{q}) \in \mathbb{Z}^{2g} \cong H_1(\Sigma_g, \mathbb{Z})$

Fix an EVEN $N \in \mathbb{N}$; set $\hbar = \frac{1}{2\pi N}$. (to meet Weil's integrality condition)

9/20

Fix an **EVEN**
$$N \in \mathbb{N}$$
; set $\hbar = \frac{1}{2\pi N}$.

Quantizing
$$\mathcal{J}(\Sigma_g)$$

Recall $\mathcal{H} := \left\{ \mathcal{M} \xrightarrow{s} \mathcal{L} \mid \forall \mathbf{v} \in \mathbf{F} : \nabla_{\mathbf{v}} s = 0 \right\}$;

1 \mathcal{L} is a HOLOMORPHIC line bundle with curvature

$$\omega/\hbar = \pi i N (dz)^T \wedge Y^{-1} d\bar{z}$$
, where $\Pi = X + iY$.

9/20

Fix an **EVEN**
$$N \in \mathbb{N}$$
; set $\hbar = \frac{1}{2\pi N}$.

Quantizing
$$\mathcal{J}(\Sigma_g)$$

Recall $\mathcal{H} := \left\{ \mathcal{M} \xrightarrow{s} \mathcal{L} \mid \forall \mathbf{v} \in \mathbf{F} : \nabla_{\mathbf{v}} s = 0 \right\}$;

1 \mathcal{L} is a HOLOMORPHIC line bundle with curvature

$$\omega/\hbar = \pi i N (d\mathbf{z})^T \wedge Y^{-1} d\bar{\mathbf{z}}, \text{ where } \Pi = X + i Y.$$

2 PULL \mathcal{L} BACK to $\mathbb{C}^g \times \mathbb{C}$ along quotient $\mathbb{C}^g \times \mathbb{C} \twoheadrightarrow \mathcal{L}$.

Fix an **EVEN**
$$N \in \mathbb{N}$$
; set $\hbar = \frac{1}{2\pi N}$.

Quantizing
$$\mathcal{J}(\Sigma_g)$$

Recall $\mathcal{H} := \left\{ \mathcal{M} \xrightarrow{s} \mathcal{L} \mid \forall v \in F : \nabla_v s = 0 \right\}$;

1 \mathcal{L} is a **HOLOMORPHIC** line bundle with curvature

$$\omega/\hbar = \pi i N (d\mathbf{z})^T \wedge Y^{-1} d\bar{\mathbf{z}}, \text{ where } \Pi = X + i Y.$$

2 PULL \mathcal{L} BACK to $\mathbb{C}^g \times \mathbb{C}$ along quotient $\mathbb{C}^g \times \mathbb{C} \twoheadrightarrow \mathcal{L}$.

3 A COCYCLE $\Lambda: \mathbb{C}^g \times \Lambda(1, \Pi) \to \mathbb{C}$ encodes $\mathbb{C}^g \times \mathbb{C}$ by

$$(\mathbf{z},\zeta) \sim (\mathbf{z}',\zeta') \quad \iff \quad \begin{aligned} \mathbf{z}' &= \mathbf{z} + \lambda, \ \zeta' &= \Lambda(\mathbf{z},\lambda)\zeta \\ \text{for some } \lambda \in \Lambda(\mathbf{1},\Pi). \end{aligned}$$

4 A is HOLOMORPHIC in z (for \mathcal{L} to be), & satisfies COCYCLE CONDITION:

 $\wedge(z,\lambda)\wedge(z+\lambda,\mu)=\wedge(z,\mu+\lambda)\quad\text{for all }z\in\mathbb{C}^g,\;\lambda,\mu\in\Lambda(1,\Pi).$

9/20

4 A is HOLOMORPHIC in z (for \mathcal{L} to be), & satisfies COCYCLE CONDITION:

$$\Lambda(z,\lambda)\Lambda(z+\lambda,\mu)=\Lambda(z,\mu+\lambda) \quad ext{for all } z\in\mathbb{C}^g, \ \lambda,\mu\in\Lambda(1,\Pi).$$

5 SIMPLEST SOLUTION: \leftarrow other solutions just tensor \mathcal{L} with a flat line bundle

$$\Lambda(\boldsymbol{z}, \boldsymbol{\lambda}_j) = 1, \quad \Lambda(\boldsymbol{z}, \boldsymbol{\lambda}_{g+j}) = e^{N\pi(2iz_j - \pi_{jj})}$$

9/20

.

4 A is HOLOMORPHIC in z (for \mathcal{L} to be), & satisfies COCYCLE CONDITION:

$$\Lambda(z,\lambda)\Lambda(z+\lambda,\mu)=\Lambda(z,\mu+\lambda) \quad ext{for all } z\in\mathbb{C}^g, \ \lambda,\mu\in\Lambda(1,\Pi).$$

5 SIMPLEST SOLUTION:

$$\Lambda(\boldsymbol{z}, \boldsymbol{\lambda}_j) = 1, \quad \Lambda(\boldsymbol{z}, \boldsymbol{\lambda}_{g+j}) = e^{N\pi(2iz_j - \pi_{jj})}$$

6 With $\mathbf{F} = \text{span}\{\frac{\partial}{\partial \bar{z}_1}, \dots, \frac{\partial}{\partial \bar{z}_n}\}, \mathcal{H}$ is just HOLOMORPHIC SXNS. Pulled back to \mathbb{C}^g , they satisfy:

$$egin{aligned} &f(\mathbf{z}+m{\lambda}_j)=f(\mathbf{z})\ &f(\mathbf{z}+m{\lambda}_{g+j})=e^{N\pi(2iz_j-\pi_{jj})}f(\mathbf{z}). \end{aligned}$$

This is the set $\Theta_N^{\Pi}(\Sigma_g)$ of "THETA FUNCTIONS".

Lemma (Basis for $\Theta_N^{\Pi}(\Sigma_g)$)

A BASIS for $\Theta_N^{\Pi}(\Sigma_g)$ is given by the "theta series":

$$\theta_{\boldsymbol{\mu}}^{\Pi}(\boldsymbol{z}) \coloneqq \sum_{\boldsymbol{n} \in \mathbb{Z}^{\mathcal{S}}} \exp\left(2\pi i N \left[\frac{1}{2} \left(\frac{\boldsymbol{\mu}}{N} + \boldsymbol{n}\right)^{\mathsf{T}} \Pi \left(\frac{\boldsymbol{\mu}}{N} + \boldsymbol{n}\right) + \left(\frac{\boldsymbol{\mu}}{N} + \boldsymbol{n}\right)^{\mathsf{T}} \boldsymbol{z}\right]\right),$$

for $\boldsymbol{\mu} \in \{0, \ldots, N-1\}^g \equiv \mathbb{Z}_N^g$.

Theorem (Weyl quantization) *QUANTIZED EXPONENTIALS act on* $\Theta_N^{\Pi}(\Sigma_g)$ *as*

$$\mathsf{op}\Big(e^{2\pi i (p^{\mathsf{T}} \mathbf{x} + q^{\mathsf{T}} y)}\Big) \cdot \theta_{\mu}^{\mathsf{\Pi}}(\mathbf{z}) = e^{-\frac{i\pi}{N} (p^{\mathsf{T}} q - 2\mu^{\mathsf{T}} q)} \ \theta_{\mu+p}^{\mathsf{\Pi}}(\mathbf{z}).$$

 \rightarrow "Schrödinger Rep" of Finite Heisenberg group on $\Theta_N^{\Pi}(\Sigma_g)$

Theorem (Weyl quantization) *QUANTIZED EXPONENTIALS act on* $\Theta_N^{\Pi}(\Sigma_g)$ *as*

$$\mathsf{op}\Big(e^{2\pi i (p^T \mathbf{x} + q^T y)}\Big) \cdot \theta_{\boldsymbol{\mu}}^{\mathsf{\Pi}}(\boldsymbol{z}) = e^{-\frac{i\pi}{N}(p^T q - 2\boldsymbol{\mu}^T q)} \ \theta_{\boldsymbol{\mu}+\boldsymbol{p}}^{\mathsf{\Pi}}(\boldsymbol{z}).$$

 \rightarrow "Schrödinger Rep" of Finite Heisenberg group on $\Theta_N^{\Pi}(\Sigma_g)$

Theorem (Space of linear operators) The space $L(\Theta_N^{\Pi}(\Sigma_g))$ of LINEAR OPERATORS on $\Theta_N^{\Pi}(\Sigma_g)$ has basis $op(e^{2\pi i(\mathbf{p}^T \mathbf{x} + \mathbf{q}^T \mathbf{y})})$, where $\mathbf{p}, \mathbf{q} \in \mathbb{Z}_N^g$.

We turn to the other space from our goal:

$$\begin{cases} \text{space of THETA FUNCTIONS} \\ \text{associated with SURFACE} \end{cases} \cong \begin{cases} \text{space of SKEINS in} \\ \text{enclosed HANDLEBODY} \end{cases}$$

We turn to the other space from our goal:

 H_{g}

This construction is more direct:

We turn to the other space from our goal:

This construction is more direct:

$$H_{g}$$

$$\downarrow \textcircled{1} \begin{array}{c} \text{construct} \\ \text{skein module} \end{array}$$

$$\mathcal{L}_{N}(H_{g})$$

 \mathbb{N}

Fix smooth compact oriented 3-MFD *M*.

12/20

Fix smooth compact oriented 3-MFD *M*.

Definition (Framed links)

1 "framed link" \longrightarrow **SMOOTH EMBEDDING** of finite disjoint union of (**ORIENTED**) **ANNULI** $S^1 \times [0, 1]$

Links & parallel powers

Fix smooth compact oriented 3-MFD *M*.

Definition (Framed links)

1 "framed link" \longrightarrow **SMOOTH EMBEDDING** of finite disjoint union of (**ORIENTED**) **ANNULI** $S^1 \times [0, 1]$

2 Link(M) \longrightarrow $\left\{ \begin{array}{c} \text{AMBIENT ISOTOPY classes} \\ \text{of framed links in } M \end{array} \right\}$

Links & parallel powers

Fix smooth compact oriented 3-MFD *M*.

Definition (Framed links)

- **1** "framed link" \longrightarrow SMOOTH EMBEDDING of finite disjoint union of (ORIENTED) ANNULI $S^1 \times [0, 1]$
- **2** Link(M) \longrightarrow $\left\{ \begin{array}{c} \text{AMBIENT ISOTOPY classes} \\ \text{of framed links in } M \end{array} \right\}$

Definition (Parallel power)

The *n*th "parallel power" $K^{||N}$ of FRAMED KNOT $K \xrightarrow{\nu} M$ is obtained by restricting ν to $S^1 \times \bigsqcup_{k=1}^n \left[\frac{j}{n+1} - \frac{1}{2n}, \frac{j}{n+1} + \frac{1}{2n} \right]$.
Links & parallel powers

Fix smooth compact oriented 3-MFD *M*.

Definition (Framed links)

1 "framed link" \rightarrow **SMOOTH EMBEDDING** of finite disjoint union of (ORIENTED) ANNULI $S^1 \times [0, 1]$ **2** Link(M) \longrightarrow $\begin{cases} \text{AMBIENT ISOTOPY classes} \\ \text{of framed links in } M \end{cases}$

Definition (Parallel power)

The *n*th "parallel power" $K^{||N}$ of FRAMED KNOT $K \stackrel{\nu}{\longrightarrow} M$ is obtained by restricting ν to $S^1 \times \bigsqcup_{k=1}^n \left[\frac{j}{n+1} - \frac{1}{2n}, \frac{j}{n+1} + \frac{1}{2n} \right]$.

Definition (Linking number skein module)

 $\blacksquare \mathbb{C}[t, t^{-1}] \operatorname{Link}(\mathcal{M}) \longrightarrow \operatorname{free} \mathbb{C}[t, t^{-1}] \operatorname{-module} \operatorname{over} \operatorname{Link}(\mathcal{M})$

Linking number skein module & the reduced version

13/20

 \mathbb{S}

Definition (Linking number skein module) $\mathbb{C}[t, t^{-1}] \operatorname{Link}(\mathcal{M}) \longrightarrow \text{ free } \mathbb{C}[t, t^{-1}] \operatorname{-MODULE} \text{ over } \operatorname{Link}(\mathcal{M})$ $\mathbb{C}[t, t^{-1}] \operatorname{Link}(\mathcal{M}) / \sim \text{ for "SKEIN RELATIONS"}$ $\mathbb{C}[t, t^{-1}] \operatorname{Link}(\mathcal{M}) / \sim t^{-1} \subset \leftarrow \text{ links identical except} \text{ in embedded ball}$ $\mathbb{C}[t, t^{-1}] \subset \mathsf{C}[t, t^{-1}] \subset \mathsf{C}$

Linking number skein module & the reduced version

13/20

 \mathbb{S}

 $\mathcal{L}(M)$ is the "linking number **SKEIN MODULE**"; its elements are "skeins".

Linking number skein module

 \mathbb{S}

 $\mathcal{L}(M)$ is the "linking number **SKEIN MODULE**"; its elements are "skeins".

3 $\mathcal{L}_N(\mathcal{M}) \coloneqq \mathcal{L}(\mathcal{M}) / \sim$ for further skein relations

$$iii$$
 $t \sigma \sim e^{i\pi \over N} \sigma$

13/20

iv $L \sim L \cup K^{||n|}$

 $\mathcal{L}_N(M)$ is the "REDUCED linking number skein module".

We can define an ALGEBRA $\mathcal{L}(\Sigma)$ for smooth compact oriented SURFACE Σ :

 $\blacksquare \text{ ORIENTATION of } \Sigma \times [0,1] \quad \longleftarrow \quad \text{orientation of } \Sigma$

We can define an ALGEBRA $\mathcal{L}(\Sigma)$ for smooth compact oriented SURFACE Σ :

- **ORIENTATION** of $\Sigma \times [0, 1] \quad \longleftarrow \quad \text{orientation of } \Sigma$
- **2** PRODUCT on $\mathcal{L}(\Sigma \times [0, 1]) \leftarrow \text{Gluing } \Sigma \times [0, 1]$ to itself

We can define an ALGEBRA $\mathcal{L}(\Sigma)$ for smooth compact oriented SURFACE Σ :

- $\blacksquare \text{ ORIENTATION of } \Sigma \times [0,1] \quad \longleftarrow \quad \text{orientation of } \Sigma$
- **2** PRODUCT on $\mathcal{L}(\Sigma \times [0, 1]) \quad \longleftarrow \quad \text{Gluing } \Sigma \times [0, 1] \text{ to itself}$
- $\begin{array}{rcl} \textbf{3} \ \text{skein} \ \langle \gamma \rangle \ \text{of } \textbf{MULTICURVE} \ \gamma & \longleftarrow & \textbf{EMBEDDING} \ \Sigma \ \text{as} \ \Sigma \times \{1/2\} \ \text{in} \\ & \Sigma \times [0,1] \end{array}$

We can define an ALGEBRA $\mathcal{L}(\Sigma)$ for smooth compact oriented SURFACE Σ :

- **1** ORIENTATION of $\Sigma \times [0, 1] \quad \longleftarrow$ orientation of Σ
- **2** PRODUCT on $\mathcal{L}(\Sigma \times [0, 1]) \quad \longleftarrow \quad \text{Gluing } \Sigma \times [0, 1] \text{ to itself}$
- **3** skein $\langle \gamma \rangle$ of multicurve $\gamma \leftarrow = \text{EMBEDDING } \Sigma \text{ as } \Sigma \times \{1/2\} \text{ in } \Sigma \times [0, 1]$

Write $\mathcal{L}(\Sigma) \coloneqq \mathcal{L}(\Sigma \times [0, 1])$. A similar def applies to $\mathcal{L}_N(\Sigma)$.

 \mathbb{S}

Fix a canonical basis, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Fix a CANONICAL BASIS, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Lemma (H_g as cylinder)

 \exists orientation preserving DIFFEO $f : \Sigma_g \to \partial H_g$, depending only on b_1, \ldots, b_g , such that

Fix a CANONICAL BASIS, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Lemma (H_g as cylinder)

 \exists orientation preserving DIFFEO $f : \Sigma_g \to \partial H_g$, depending only on b_1, \ldots, b_g , such that

• each $f(b_1)$ bounds an **EMBEDDED** DISK;

Fix a CANONICAL BASIS, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Lemma (H_g as cylinder)

 \exists orientation preserving DIFFEO $f : \Sigma_g \to \partial H_g$, depending only on b_1, \ldots, b_g , such that

- each $f(b_1)$ bounds an **EMBEDDED DISK**;
- H_g is realized as $\Sigma_{0,g+1} \times [0,1]$ so $f(a_1), \ldots, f(a_g)$ is a CANONICAL BASIS for $H_1(H_g, \mathbb{Z})$.

Fix a CANONICAL BASIS, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Lemma (H_g as cylinder)

 \exists orientation preserving DIFFEO $f : \Sigma_g \to \partial H_g$, depending only on b_1, \ldots, b_g , such that

- each $f(b_1)$ bounds an **EMBEDDED DISK**;
- H_g is realized as $\Sigma_{0,g+1} \times [0,1]$ so $f(a_1), \ldots, f(a_g)$ is a CANONICAL BASIS for $H_1(H_g, \mathbb{Z})$.

Action of $\mathcal{L}_N(\Sigma_g)$ on $\mathcal{L}_N(H_g)$

By GLUING $\Sigma_g \times [0, 1]$ to H_g under f, we get an AXN of $\mathcal{L}_N(\Sigma_g)$ on $\mathcal{L}_N(H_g)$.

We finally remark on the isomorphism:

ie. $\mathcal{L}_N(H_g) \cong \Theta_N^{\Pi}(\Sigma_g)$

Fix a canonical basis, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Operator algebras

Fix a canonical basis, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Lemma (Basis for $\mathcal{L}_N(\Sigma_g)$)

 $\mathcal{L}_{N}(\Sigma_{g})$ has *BASIS* $\langle (\boldsymbol{p}, \boldsymbol{q}) \rangle$, for $(\boldsymbol{p}, \boldsymbol{q}) \in \mathbb{Z}^{2g} \cong H_{1}(\Sigma_{g}, \mathbb{Z})$.

Operator algebras

17/20

Fix a canonical basis, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Lemma (Basis for $\mathcal{L}_N(\Sigma_g)$) $\mathcal{L}_N(\Sigma_g)$ has BASIS $\langle (\mathbf{p}, \mathbf{q}) \rangle$, for $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^{2g} \cong H_1(\Sigma_g, \mathbb{Z})$.

Theorem (Operator algebras) $\mathcal{L}_N(\Sigma_g) \cong L(\Theta_N^{\Pi}(\Sigma_g)), \text{ as algebras.}$

Operator algebras

Fix a canonical basis, $a_1, \ldots, a_g, b_1, \ldots, b_g$ of $H_1(\Sigma_g, \mathbb{Z})$.

Lemma (Basis for $\mathcal{L}_N(\Sigma_g)$) $\mathcal{L}_N(\Sigma_g)$ has BASIS $\langle (\mathbf{p}, \mathbf{q}) \rangle$, for $(\mathbf{p}, \mathbf{q}) \in \mathbb{Z}^{2g} \cong H_1(\Sigma_g, \mathbb{Z})$.

Theorem (Operator algebras) $\mathcal{L}_N(\Sigma_g) \cong L(\Theta_N^{\Pi}(\Sigma_g)), \text{ as algebras.}$

"Proof".

17/20

By above lemma & prior basis for $L(\Theta_N^{\Pi}(\Sigma_g))$, isomorphism is

$$\langle (\boldsymbol{p}, \boldsymbol{q}) \rangle \mapsto \mathsf{op}\left(e^{2\pi i (\boldsymbol{p}^T \boldsymbol{x} + \boldsymbol{q}^T \boldsymbol{y})}\right).$$

.....

Lemma (Basis for $\mathcal{L}_N(H_g)$)

 $\mathcal{L}_{N}(H_{g}) = \mathcal{L}_{N}(\Sigma_{0,g+1} \times [0,1])$ has BASIS $\langle \gamma \rangle$, where γ ranges over multicurves representing homology classes of $H_{1}(\Sigma_{0,g+1}, \mathbb{Z}_{N})$

.....

18/20

Lemma (Basis for $\mathcal{L}_N(H_g)$)

 $\mathcal{L}_{N}(H_{g}) = \mathcal{L}_{N}(\Sigma_{0,g+1} \times [0,1])$ has BASIS $\langle \gamma \rangle$, where γ ranges over multicurves representing homology classes of $H_{1}(\Sigma_{0,g+1}, \mathbb{Z}_{N})$

Theorem (Main result)

$\mathcal{L}_N(H_g) \qquad \Theta_N^{\Pi}(\Sigma_g)$

-

18/20

Lemma (Basis for $\mathcal{L}_N(H_g)$)

 $\mathcal{L}_{N}(H_{g}) = \mathcal{L}_{N}(\Sigma_{0,g+1} \times [0,1])$ has BASIS $\langle \gamma \rangle$, where γ ranges over multicurves representing homology classes of $H_{1}(\Sigma_{0,g+1}, \mathbb{Z}_{N})$

Theorem (Main result)

.....

18/20

Lemma (Basis for $\mathcal{L}_N(H_g)$)

 $\mathcal{L}_{N}(H_{g}) = \mathcal{L}_{N}(\Sigma_{0,g+1} \times [0,1])$ has BASIS $\langle \gamma \rangle$, where γ ranges over multicurves representing homology classes of $H_{1}(\Sigma_{0,g+1}, \mathbb{Z}_{N})$

Theorem (Main result)

$$\begin{array}{cccc}
\mathcal{L}_{N}(\Sigma_{g}) & \cdots & \cong & \cdots & \downarrow \left(\Theta_{N}^{\Pi}(\Sigma_{g})\right) \\
& & & & & & \\
& & & & & \\
\mathcal{L}_{N}(H_{g}) & & & & \Theta_{N}^{\Pi}(\Sigma_{g})
\end{array}$$

.....

18/20

Lemma (Basis for $\mathcal{L}_N(H_g)$)

 $\mathcal{L}_N(H_g) = \mathcal{L}_N(\Sigma_{0,g+1} \times [0,1])$ has BASIS $\langle \gamma \rangle$, where γ ranges over multicurves representing homology classes of $H_1(\Sigma_{0,g+1}, \mathbb{Z}_N)$

Theorem (Main result)

$$\mathcal{L}_{N}(\Sigma_{g}) \xrightarrow{} \mathcal{L}(\Theta_{N}^{\Pi}(\Sigma_{g}))$$

$$\bigwedge_{\mathcal{L}_{N}(H_{g})} \xrightarrow{\cong} \Theta_{N}^{\Pi}(\Sigma_{g})$$

18/20

Lemma (Basis for $\mathcal{L}_N(H_g)$)

 $\mathcal{L}_N(H_g) = \mathcal{L}_N(\Sigma_{0,g+1} \times [0,1])$ has BASIS $\langle \gamma \rangle$, where γ ranges over multicurves representing homology classes of $H_1(\Sigma_{0,g+1}, \mathbb{Z}_N)$

Theorem (Main result)

where γ ranges over <u>MULTICURVES</u> in $\Sigma_{0,g+1} \cong H_g$, $[\gamma] \in H_1(H_g, \mathbb{Z}_N) = \mathbb{Z}_N^g$. This iso <u>INTERTWINES</u> the resp actions.

Proof outline.

1 Showing
$$\Theta_N^{\Pi}(\Sigma_g) \cong \mathcal{L}_N(H_g)$$
:

Proof outline.

1 Showing $\Theta_N^{\Pi}(\Sigma_g) \cong \mathcal{L}_N(H_g)$:

1 recall **BASIS** $\langle \gamma \rangle$ with $\gamma \in H_1(H_g, \mathbb{Z}_N)$ for $\mathcal{L}_N(H_g)$;

Proof outline.

1 Showing
$$\Theta_N^{\Pi}(\Sigma_g) \cong \mathcal{L}_N(H_g)$$
:

1 recall BASIS $\langle \gamma \rangle$ with $\gamma \in H_1(H_g, \mathbb{Z}_N)$ for $\mathcal{L}_N(H_g)$;

2 recall **BASIS** $\theta_{\mu}^{\Pi}(z)$ with $\mu \in \mathbb{Z}_{N}^{g}$ for $\Theta_{N}^{\Pi}(\Sigma_{g})$;

Proof outline.

1 Showing
$$\Theta_N^{\Pi}(\Sigma_g) \cong \mathcal{L}_N(H_g)$$
:

- **1** recall BASIS $\langle \gamma \rangle$ with $\gamma \in H_1(H_g, \mathbb{Z}_N)$ for $\mathcal{L}_N(H_g)$;
- **2** recall **BASIS** $\theta_{\mu}^{\Pi}(z)$ with $\mu \in \mathbb{Z}_{N}^{g}$ for $\Theta_{N}^{\Pi}(\Sigma_{g})$;
- 3 note $[\gamma_1] = [\gamma_2] \implies \langle \gamma_1 \rangle = \langle \gamma_2 \rangle;$

Proof outline.

1 Showing
$$\Theta_N^{\Pi}(\Sigma_g) \cong \mathcal{L}_N(H_g)$$
:

- **1** recall BASIS $\langle \gamma \rangle$ with $\gamma \in H_1(H_g, \mathbb{Z}_N)$ for $\mathcal{L}_N(H_g)$;
- **2** recall **BASIS** $\theta^{\Pi}_{\mu}(z)$ with $\mu \in \mathbb{Z}_{N}^{g}$ for $\Theta^{\Pi}_{N}(\Sigma_{g})$;

3 note
$$[\gamma_1] = [\gamma_2] \implies \langle \gamma_1 \rangle = \langle \gamma_2 \rangle;$$

4 note
$$H_1(H_g, \mathbb{Z}_N) \cong \mathbb{Z}_N^g$$
.

Proof outline.

1 Showing this iso is an **INTERTWINER**:

Proof outline.

- **1** Showing this iso is an **INTERTWINER**:
 - **1** consider MULTICURVE $(\boldsymbol{p}, \boldsymbol{q}) \subset \Sigma_g$;

Proof outline.

- **1** Showing this iso is an **INTERTWINER**:
 - **1** consider MULTICURVE $(\boldsymbol{p}, \boldsymbol{q}) \subset \Sigma_g$;
 - **2** consider multicurve $\gamma = a_1^{||\mu_1} a_2^{||\mu_2} \cdots a_g^{||\mu_g} \subset \Sigma_{0,g+1}$

Proof outline.

- **1** Showing this iso is an **INTERTWINER**:
 - **1** consider MULTICURVE $(\boldsymbol{p}, \boldsymbol{q}) \subset \Sigma_g$;
 - **2** consider multicurve $\gamma = a_1^{||\mu_1} a_2^{||\mu_2} \cdots a_g^{||\mu_g} \subset \Sigma_{0,g+1}$

3 compute

$$\langle (\boldsymbol{p}, \boldsymbol{q}) \rangle \cdot \langle a_1^{||\mu_1} \cdots a_g^{||\mu_g} \rangle = t^{-\boldsymbol{p}^T \boldsymbol{q} - 2\boldsymbol{\mu}^T \boldsymbol{q}} \langle a_1^{||\mu_1 + p_1} \cdots a_g^{||\mu_g + p_g} \rangle$$

Proof outline.

- **1** Showing this iso is an **INTERTWINER**:
 - **1** consider MULTICURVE $(\boldsymbol{p}, \boldsymbol{q}) \subset \Sigma_g$;
 - 2 consider multicurve $\gamma = a_1^{||\mu_1} a_2^{||\mu_2} \cdots a_g^{||\mu_g} \subset \Sigma_{0,g+1}$

3 compute

$$\langle (\boldsymbol{p}, \boldsymbol{q}) \rangle \cdot \langle a_1^{||\mu_1} \cdots a_g^{||\mu_g} \rangle = t^{-\boldsymbol{p}^T \boldsymbol{q} - 2\boldsymbol{\mu}^T \boldsymbol{q}} \langle a_1^{||\mu_1 + p_1} \cdots a_g^{||\mu_g + p_g} \rangle$$

4 γ correponds to $\theta_{\mu}^{\Pi}(\mathbf{z})$, and $a_1^{||\mu_1+p_1}\cdots a_g^{||\mu_g+p_g}$ to $\theta_{\mu+p}^{\Pi}(\mathbf{z})$
Overview of the proof

Proof outline.

- **1** Showing this iso is an **INTERTWINER**:
 - **1** consider MULTICURVE $(\boldsymbol{p}, \boldsymbol{q}) \subset \Sigma_g$;
 - **2** consider multicurve $\gamma = a_1^{||\mu_1} a_2^{||\mu_2} \cdots a_g^{||\mu_g} \subset \Sigma_{0,g+1}$

3 compute

$$\langle (\boldsymbol{p}, \boldsymbol{q}) \rangle \cdot \langle a_1^{||\mu_1} \cdots a_g^{||\mu_g} \rangle = t^{-\boldsymbol{p}^T \boldsymbol{q} - 2\boldsymbol{\mu}^T \boldsymbol{q}} \langle a_1^{||\mu_1 + p_1} \cdots a_g^{||\mu_g + p_g} \rangle$$

4 γ correpords to $\theta_{\mu}^{\Pi}(z)$, and $a_1^{\mid \mid \mu_1 + p_1} \cdots a_g^{\mid \mid \mu_g + p_g}$ to $\theta_{\mu+p}^{\Pi}(z)$

5 setting $t = e^{\frac{i\pi}{N}}$, we recognize the SCHRÖDINGER REP

$$\mathsf{op}\left(e^{2\pi i (p^T x + q^T y)}\right) \cdot \theta_{\mu}^{\Pi}(z) = e^{-\frac{i\pi}{N}(p^T q - 2\mu^T q)} \; \theta_{\mu+p}^{\Pi}(z).$$

Overview of the proof *Observation / lamentation*

Of course, we have relied on **BASES** for each of

$$\Theta_N^{\Pi}(\Sigma_g), \quad \mathcal{L}_N(H_g), \quad L(\Theta_N^{\Pi}(\Sigma_g)), \quad \mathcal{L}_N(\Sigma_g).$$

Concluding remarks

Why the result is interesting

1 It gives a much simpler **TOPOLOGICAL VERSION** of the **SCHRÖDINGER REP** on theta functions:

$$\mathsf{op}\Big(e^{2\pi i(\boldsymbol{p}^{\mathsf{T}}\boldsymbol{x}+\boldsymbol{q}^{\mathsf{T}}\boldsymbol{y})}\Big)\cdot\theta_{\boldsymbol{\mu}}^{\mathsf{\Pi}}(\boldsymbol{z})=e^{-\frac{i\pi}{N}(\boldsymbol{p}^{\mathsf{T}}\boldsymbol{q}-2\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{q})}\;\theta_{\boldsymbol{\mu}+\boldsymbol{p}}^{\mathsf{\Pi}}(\boldsymbol{z}).$$

20/20

Why the result is interesting

1 It gives a much simpler **TOPOLOGICAL VERSION** of the **SCHRÖDINGER REP** on theta functions:

$$\mathsf{op}\Big(e^{2\pi i(\boldsymbol{p}^{\mathsf{T}}\boldsymbol{x}+\boldsymbol{q}^{\mathsf{T}}\boldsymbol{y})}\Big)\cdot\theta_{\boldsymbol{\mu}}^{\mathsf{\Pi}}(\boldsymbol{z})=e^{-\frac{i\pi}{N}(\boldsymbol{p}^{\mathsf{T}}\boldsymbol{q}-2\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{q})}\;\theta_{\boldsymbol{\mu}+\boldsymbol{p}}^{\mathsf{\Pi}}(\boldsymbol{z}).$$

2 It leads to a UNIFIED THEORY of theta functions on a Riemann surface & skeins in the enclosed handlebody in the form of a TFQT.

20/20

Why the result is interesting

1 It gives a much simpler **TOPOLOGICAL VERSION** of the **SCHRÖDINGER REP** on theta functions:

$$\mathsf{op}\Big(e^{2\pi i (\mathbf{p}^T \mathbf{x} + \mathbf{q}^T \mathbf{y})}\Big) \cdot \theta^{\mathsf{\Pi}}_{\boldsymbol{\mu}}(\mathbf{z}) = e^{-\frac{i\pi}{N} (\mathbf{p}^T \mathbf{q} - 2\boldsymbol{\mu}^T \mathbf{q})} \ \theta^{\mathsf{\Pi}}_{\boldsymbol{\mu} + \boldsymbol{p}}(\mathbf{z}).$$

2 It leads to a UNIFIED THEORY of theta functions on a Riemann surface & skeins in the enclosed handlebody in the form of a TFQT.

Connection to my work

The TQFT in question is essentially U(1) CHERN-SIMONS THEORY. In the more common SU(2) case,

20/20

Why the result is interesting

1 It gives a much simpler **TOPOLOGICAL VERSION** of the **SCHRÖDINGER REP** on theta functions:

$$\mathsf{op}\Big(e^{2\pi i (\mathbf{p}^T \mathbf{x} + \mathbf{q}^T \mathbf{y})}\Big) \cdot \theta^{\mathsf{\Pi}}_{\boldsymbol{\mu}}(\mathbf{z}) = e^{-\frac{i\pi}{N} (\mathbf{p}^T \mathbf{q} - 2\boldsymbol{\mu}^T \mathbf{q})} \ \theta^{\mathsf{\Pi}}_{\boldsymbol{\mu} + \boldsymbol{p}}(\mathbf{z}).$$

2 It leads to a UNIFIED THEORY of theta functions on a Riemann surface & skeins in the enclosed handlebody in the form of a TFQT.

Connection to my work

The TQFT in question is essentially U(1) CHERN-SIMONS THEORY. In the more common SU(2) case,

 $\blacksquare \ \mathcal{J}(\Sigma_g) \quad \longrightarrow \quad \text{MODULI SPACE of flat SU(2) connections on } \Sigma_g;$

Why the result is interesting

1 It gives a much simpler **TOPOLOGICAL VERSION** of the **SCHRÖDINGER REP** on theta functions:

$$\mathsf{op}\Big(e^{2\pi i (\mathbf{p}^T \mathbf{x} + \mathbf{q}^T \mathbf{y})}\Big) \cdot \theta^{\mathsf{\Pi}}_{\boldsymbol{\mu}}(\mathbf{z}) = e^{-\frac{i\pi}{N} (\mathbf{p}^T \mathbf{q} - 2\boldsymbol{\mu}^T \mathbf{q})} \ \theta^{\mathsf{\Pi}}_{\boldsymbol{\mu} + \boldsymbol{p}}(\mathbf{z}).$$

2 It leads to a UNIFIED THEORY of theta functions on a Riemann surface & skeins in the enclosed handlebody in the form of a TFQT.

Connection to my work

The TQFT in question is essentially U(1) CHERN-SIMONS THEORY. In the more common SU(2) case,

- $\blacksquare \mathcal{J}(\Sigma_g) \longrightarrow \text{MODULI SPACE of flat SU(2) connections on } \Sigma_g;$
- 2 SKEIN RELATIONS are more complicated;

... otherwise, same result. My work involves making this iso BASIS-FREE.

References I

20/20

Atiyah, M. (1990). The geometry and physics of knots. Cambridge University Press.

- Gelca, R. (2014). Theta functions and knots. World scientific.
- Lee, J. M. (2018). Introduction to riemannian manifolds (Vol. 176). Springer International Publishing.
- Le Floch, Y. (2018). A brief introduction to Berezin-Toeplitz operators on compact Kähler manifolds. Springer.
- Looijenga, E. (2008, December). *Smooth manifolds.* Retrieved November 8, 2022, from https://webspace.science.uu.nl/~looij101/difftop06eng.pdf
- Moerdijk, I. (2008, January). *Notes on Homological Algebra* [Lecture notes]. University of Utrecht. Retrieved 2023-07-13, from
 - https://www.math.ru.nl/~bmoonen/CatHomAlg/NotesHomAlgebra.pdf
- Schottenloher, M. (2022). *Lecture notes on geometric quantization*. Retrieved November 8, 2022, from
 - https://www.mathematik.uni-muenchen.de/~schotten/GEQ/GEQ.pdf